Robot-Assisted Orthopedic Surgery Bone Pose Identification Using Task-Specific Capability Maps

J. R. Roldan, M. Jung, Feimo Shen, D. Milutinović
{"title":"Robot-Assisted Orthopedic Surgery Bone Pose Identification Using Task-Specific Capability Maps","authors":"J. R. Roldan, M. Jung, Feimo Shen, D. Milutinović","doi":"10.1109/ICARA56516.2023.10126064","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a method for total knee arthroplasty (TKA) bone pose identification for robot-assisted orthopedic surgery. The TKA procedure presents a unique challenge because of a finite number of cutting trajectories, their relative locations that are not completely known, anatomical constraints and bone placement errors. Our method addresses these challenges by constructing cutting task-specific capability maps which represent the robot's ability to execute the task for various task poses. To identify the femur and tibia bone poses from the map, we develop a feasibility measure which scores the bone poses based on the volume of feasible workspace locations. Our method is successfully tested on the TCAT® surgical robot and the results reveal that it is able to properly identify anatomically feasible bone poses that have enough margin for bone placement errors during the surgery.","PeriodicalId":443572,"journal":{"name":"2023 9th International Conference on Automation, Robotics and Applications (ICARA)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 9th International Conference on Automation, Robotics and Applications (ICARA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARA56516.2023.10126064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a method for total knee arthroplasty (TKA) bone pose identification for robot-assisted orthopedic surgery. The TKA procedure presents a unique challenge because of a finite number of cutting trajectories, their relative locations that are not completely known, anatomical constraints and bone placement errors. Our method addresses these challenges by constructing cutting task-specific capability maps which represent the robot's ability to execute the task for various task poses. To identify the femur and tibia bone poses from the map, we develop a feasibility measure which scores the bone poses based on the volume of feasible workspace locations. Our method is successfully tested on the TCAT® surgical robot and the results reveal that it is able to properly identify anatomically feasible bone poses that have enough margin for bone placement errors during the surgery.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用任务特定能力图的机器人辅助骨科手术骨姿势识别
在本文中,我们提出了一种用于机器人辅助骨科手术的全膝关节置换术(TKA)骨位姿识别方法。TKA手术具有独特的挑战,因为切割轨迹的数量有限,它们的相对位置不完全清楚,解剖限制和骨放置错误。我们的方法通过构建切割任务特定的能力图来解决这些挑战,这些能力图代表了机器人在各种任务姿势下执行任务的能力。为了从地图中识别股骨和胫骨的骨骼姿势,我们开发了一种可行性测量方法,该方法基于可行工作空间位置的体积对骨骼姿势进行评分。我们的方法在TCAT®手术机器人上成功地进行了测试,结果表明它能够正确识别解剖上可行的骨骼姿势,并且在手术过程中有足够的骨放置错误余地。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fused Swish-ReLU Efficient-Net Model for Deepfakes Detection SensorClouds: A Framework for Real-Time Processing of Multi-modal Sensor Data for Human-Robot-Collaboration Modified Bug Algorithm with Proximity Sensors to Reduce Human-Cobot Collisions Toward Computationally Efficient Path Generation and Push Planning for Robotic Nonprehensile Manipulation Correlation Analysis of Factors Influencing the Motion Planning Accuracy of Articulated Robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1