Influence of wirebond shape on its lifetime with application to frame connections

B. Czerny, I. Paul, G. Khatibi, M. Thoben
{"title":"Influence of wirebond shape on its lifetime with application to frame connections","authors":"B. Czerny, I. Paul, G. Khatibi, M. Thoben","doi":"10.1109/EUROSIME.2013.6529909","DOIUrl":null,"url":null,"abstract":"The subject of this study was to investigate the effect of different geometrical loop shapes on the reliability of 400 μm thick Al bond wires in IGBT modules by means of experimental and analytical methods. The experimental fatigue tests have been realized by linear cyclic displacements of 5-45 μm of the contact plates at 200 Hz and 20 kHz. Life time curves were obtained for bond wire connections with different loop heights, distances and angles with the main failure mechanism being wire bond heel cracking. Furthermore an analytical model was developed to calculate the effect of variation of geometrical shape parameters on the stress at different locations of the bond wire. This model can be used to make a preliminary geometry selection of the bond wire and to predict the force or stress at critical sites of the wire bond during stress tests. This model was validated with finite element analysis.","PeriodicalId":270532,"journal":{"name":"2013 14th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 14th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROSIME.2013.6529909","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

The subject of this study was to investigate the effect of different geometrical loop shapes on the reliability of 400 μm thick Al bond wires in IGBT modules by means of experimental and analytical methods. The experimental fatigue tests have been realized by linear cyclic displacements of 5-45 μm of the contact plates at 200 Hz and 20 kHz. Life time curves were obtained for bond wire connections with different loop heights, distances and angles with the main failure mechanism being wire bond heel cracking. Furthermore an analytical model was developed to calculate the effect of variation of geometrical shape parameters on the stress at different locations of the bond wire. This model can be used to make a preliminary geometry selection of the bond wire and to predict the force or stress at critical sites of the wire bond during stress tests. This model was validated with finite element analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
应用于框架连接时,焊丝形状对其寿命的影响
本文采用实验和分析相结合的方法,研究了不同几何回路形状对400 μm厚铝键合线IGBT模块可靠性的影响。在200 Hz和20 kHz下,对接触板进行5 ~ 45 μm的线性循环位移,实现了疲劳试验。得到了不同环高度、环距和环角的键合钢丝接头的寿命曲线,其主要失效机制为键合钢丝后跟开裂。此外,还建立了一个分析模型来计算几何形状参数的变化对焊丝不同位置应力的影响。该模型可用于粘结丝的初步几何形状选择,并在应力测试中预测粘结丝关键部位的力或应力。通过有限元分析对模型进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling of mixed-mode delamination by cohesive zone method Resistance electric filed dependence simulation of piezoresistive silicon pressure sensor and improvement by shield layer Reliability investigation of system in package devices toward aeronautic requirements: Methodology and application Adhesion of printed circuit boards with bending and the effect of reflow cycles Bonding wire life prediction model of the power module under power cycling test
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1