Temporal Adaptive Quantization using Accurate Estimations of Inter and Skip Probabilities

Maxime Bichon, J. L. Tanou, M. Ropert, W. Hamidouche, L. Morin, Lu Zhang
{"title":"Temporal Adaptive Quantization using Accurate Estimations of Inter and Skip Probabilities","authors":"Maxime Bichon, J. L. Tanou, M. Ropert, W. Hamidouche, L. Morin, Lu Zhang","doi":"10.1109/PCS.2018.8456275","DOIUrl":null,"url":null,"abstract":"Hybrid video coding systems use spatial and temporal predictions in order to remove redundancies within the video source signal. These predictions create coding-scheme-related dependencies, often neglected for sake of simplicity. The R-D Spatio-Temporal Adaptive Quantization (RDSTQ) solution uses such dependencies to achieve better coding efficiency. It models the temporal distortion propagation by estimating the probability of a Coding Unit (CU) to be Inter coded. Uased on this probability, each CU is given a weight depending on its relative importance compared to other CUs. However, the initial approach roughly estimates the Inter probability and does not take into account the Skip mode characteristics in the propagation. It induces important Target uitrate Deviation (TBD) compared to the reference target rate. This paper provides undeniable improvements of the original RDSTQ model in using a more accurate estimation of the Inter probability. Then a new analytical solution for local quantizers is obtained by introducing the Skip probability of a CU into the temporal distortion propagation model. The proposed solution brings −2.05% BD-BR gain in average over the RDSTQ at low rate, which corresponds to −13.54% BD-BR gain in average against no local quantization. Moreover, the TBD is reduced from 38% to 14%.","PeriodicalId":433667,"journal":{"name":"2018 Picture Coding Symposium (PCS)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Picture Coding Symposium (PCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCS.2018.8456275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Hybrid video coding systems use spatial and temporal predictions in order to remove redundancies within the video source signal. These predictions create coding-scheme-related dependencies, often neglected for sake of simplicity. The R-D Spatio-Temporal Adaptive Quantization (RDSTQ) solution uses such dependencies to achieve better coding efficiency. It models the temporal distortion propagation by estimating the probability of a Coding Unit (CU) to be Inter coded. Uased on this probability, each CU is given a weight depending on its relative importance compared to other CUs. However, the initial approach roughly estimates the Inter probability and does not take into account the Skip mode characteristics in the propagation. It induces important Target uitrate Deviation (TBD) compared to the reference target rate. This paper provides undeniable improvements of the original RDSTQ model in using a more accurate estimation of the Inter probability. Then a new analytical solution for local quantizers is obtained by introducing the Skip probability of a CU into the temporal distortion propagation model. The proposed solution brings −2.05% BD-BR gain in average over the RDSTQ at low rate, which corresponds to −13.54% BD-BR gain in average against no local quantization. Moreover, the TBD is reduced from 38% to 14%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用精确估计间隔和跳过概率的时间自适应量化
混合视频编码系统使用空间和时间预测来消除视频源信号中的冗余。这些预测创建了与编码方案相关的依赖项,为了简单起见,这些依赖项经常被忽略。R-D时空自适应量化(RDSTQ)解决方案利用这种依赖关系来实现更好的编码效率。它通过估计编码单元(CU)被互编码的概率来建立时间失真传播模型。根据这个概率,每个CU根据其相对于其他CU的重要性被赋予权重。然而,最初的方法粗略地估计了Inter概率,而没有考虑传播中的跳过模式特征。与参考目标速率相比,它会产生重要的目标速率偏差(TBD)。本文在使用更准确的Inter概率估计方面对原始RDSTQ模型进行了不可否认的改进。然后,在时域失真传播模型中引入CU的跳过概率,得到了局部量化的解析解。该方案在低速率下比RDSTQ平均获得−2.05%的BD-BR增益,在不进行局部量化的情况下平均获得−13.54%的BD-BR增益。此外,TBD从38%降至14%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Future Video Coding Technologies: A Performance Evaluation of AV1, JEM, VP9, and HM Joint Optimization of Rate, Distortion, and Maximum Absolute Error for Compression of Medical Volumes Using HEVC Intra Wavelet Decomposition Pre-processing for Spatial Scalability Video Compression Scheme Detecting Source Video Artifacts with Supervised Sparse Filters Perceptually-Aligned Frame Rate Selection Using Spatio-Temporal Features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1