{"title":"Cellulose-Based Composite as a Raw Material for Flexible and Ultra-Lightweight Mechanical Switch Devices","authors":"S. Couderc, B.J. Kim, T. Someya","doi":"10.1109/MEMSYS.2009.4805465","DOIUrl":null,"url":null,"abstract":"This article covers investigations on an original, almost fully biodegradable and flexible mechanical switch device fabricated from cellulose composite. The cellulose films, mainly composed of microfibrils, revealed a high surface roughness and poor dielectric properties making them unsuitable substrates for electronic applications. By coating the cellulose film with a specific polyimide, these drawbacks were overcome. The mechanical switch was operated through the deflection of an electrostatically actuated cantilever beam. Its displacement, induced by the electrostatic force, was validated and the switch ON state detection was performed for an actuation voltage of 55 V and for a beam-substrate distance around 30 ¿m.","PeriodicalId":187850,"journal":{"name":"2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2009.4805465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
This article covers investigations on an original, almost fully biodegradable and flexible mechanical switch device fabricated from cellulose composite. The cellulose films, mainly composed of microfibrils, revealed a high surface roughness and poor dielectric properties making them unsuitable substrates for electronic applications. By coating the cellulose film with a specific polyimide, these drawbacks were overcome. The mechanical switch was operated through the deflection of an electrostatically actuated cantilever beam. Its displacement, induced by the electrostatic force, was validated and the switch ON state detection was performed for an actuation voltage of 55 V and for a beam-substrate distance around 30 ¿m.