Visualization of Neuron Data using Nonlinear Technic

Y. Uwate, Y. Nishio, M. Obien, U. Frey
{"title":"Visualization of Neuron Data using Nonlinear Technic","authors":"Y. Uwate, Y. Nishio, M. Obien, U. Frey","doi":"10.1109/ISOCC47750.2019.9027753","DOIUrl":null,"url":null,"abstract":"In our previous study, we have proposed the method to use nonlinear time-series analysis to apply to neuronal data for visualizing a characteristic of neurons. We set up three types of neuron data which are observed at different days. By applying three nonlinear time-series analysis, we confirmed that the youngest neuron has strong activity and the neuronal behavior settles down as the day goes on. In this study, we investigate the effect of the delay parameter of attractor reconstruction of nonlinear time-series analysis. From observed results, we can see that the appropriate value of delay parameter exists to display the network characteristics.","PeriodicalId":113802,"journal":{"name":"2019 International SoC Design Conference (ISOCC)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International SoC Design Conference (ISOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISOCC47750.2019.9027753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In our previous study, we have proposed the method to use nonlinear time-series analysis to apply to neuronal data for visualizing a characteristic of neurons. We set up three types of neuron data which are observed at different days. By applying three nonlinear time-series analysis, we confirmed that the youngest neuron has strong activity and the neuronal behavior settles down as the day goes on. In this study, we investigate the effect of the delay parameter of attractor reconstruction of nonlinear time-series analysis. From observed results, we can see that the appropriate value of delay parameter exists to display the network characteristics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用非线性技术的神经元数据可视化
在我们之前的研究中,我们提出了将非线性时间序列分析应用于神经元数据的方法来可视化神经元的特征。我们设置了三种类型的神经元数据,在不同的日子观察。通过三个非线性时间序列分析,我们证实了最年轻的神经元具有很强的活动,神经元的行为随着时间的推移而稳定下来。本文研究了非线性时间序列分析中延时参数对吸引子重构的影响。从观察结果可以看出,存在合适的延迟参数值来显示网络特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-carrier Signal Detection using Convolutional Neural Networks An RRAM-based Analog Neuron Design for the Weighted Spiking Neural network NTX: A 260 Gflop/sW Streaming Accelerator for Oblivious Floating-Point Algorithms in 22 nm FD-SOI A Low-Power 20 Gbps Multi-phase MDLL-based Digital CDR with Receiver Equalization Scaling Bit-Flexible Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1