{"title":"Nitrosation of Amines in AOT-Based Microemulsions","authors":"P. Rodríguez-Dafonte","doi":"10.5772/INTECHOPEN.80947","DOIUrl":null,"url":null,"abstract":"This chapter is a review of the kinetics of nitrosation of secondary amines by N-methyl-N-nitroso-p-toluenesulfonamide (MNTS) in AOT-based microemulsions. Three regions can be distinguished in these colloids: the internal aqueous nanocore, the micellar interface and the external organic phase. The amines were chosen on the basis of their degrees of solubility resulting in a different distribution. The MNTS has a very low degree of solubility in water and the nitrosation reactions take place at the interface of the aggregates. The polarity changes at the interface have very important effects on the chemical reactivity. This kinetic study compares the results obtained in AOT microemulsions where the polarity at the interface can be tuned by adding a cosurfactant or by changing the continuous medium.","PeriodicalId":201512,"journal":{"name":"Microemulsion - a Chemical Nanoreactor [Working Title]","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microemulsion - a Chemical Nanoreactor [Working Title]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.80947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This chapter is a review of the kinetics of nitrosation of secondary amines by N-methyl-N-nitroso-p-toluenesulfonamide (MNTS) in AOT-based microemulsions. Three regions can be distinguished in these colloids: the internal aqueous nanocore, the micellar interface and the external organic phase. The amines were chosen on the basis of their degrees of solubility resulting in a different distribution. The MNTS has a very low degree of solubility in water and the nitrosation reactions take place at the interface of the aggregates. The polarity changes at the interface have very important effects on the chemical reactivity. This kinetic study compares the results obtained in AOT microemulsions where the polarity at the interface can be tuned by adding a cosurfactant or by changing the continuous medium.