J. L. Munguía-Guillén, J. A. D. L. Reyes-Heredia, M. Picquart, M. A. Vera-Ramírez, T. Viveros-García
{"title":"CoMo/γ-Al2O3 Catalysts Prepared by Reverse Microemulsion: Synthesis and Characterization","authors":"J. L. Munguía-Guillén, J. A. D. L. Reyes-Heredia, M. Picquart, M. A. Vera-Ramírez, T. Viveros-García","doi":"10.5772/INTECHOPEN.82586","DOIUrl":null,"url":null,"abstract":"A series of CoMo/ γ -Al 2 O 3 catalysts was synthesized by a reverse microemulsion method using 1-butanol as organic agent and cetyltrimethylammonium bromide as surfactant. The aqueous phase was used to form the solution of three corresponding Co, Mo and Al precursor salts. The materials were prepared at different solution concentrations in order to obtain different metal contents. All samples were char-acterized by X-ray diffraction, Raman spectroscopy, nuclear magnetic resonance and nitrogen physisorption. A chemical species distribution study was performed to establish conditions of preparation and the preponderant species present in solution as a function of pH. The materials obtained present high surface areas which decrease as the metal content (Co + Mo) increases. All samples with the exception of that with the highest metal content were amorphous as shown by X-ray diffraction. By Raman spectroscopy, Mo-O-Mo and MoO 2t species were observed in all calcined samples. Mo-O-Co, Al-O-Mo, monomers and heteropolymolybdates were observed for the lower metal content samples, and the formation of CoMoO 4 and aluminum molybdate species for the higher metal contents. These results suggest that the materials with lower metal loading have species that are easily sulfidable and provide high activity in hydrodesulfurization reactions. A model for the interaction of the species in the aqueous phase of the micelle is presented.","PeriodicalId":201512,"journal":{"name":"Microemulsion - a Chemical Nanoreactor [Working Title]","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microemulsion - a Chemical Nanoreactor [Working Title]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.82586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A series of CoMo/ γ -Al 2 O 3 catalysts was synthesized by a reverse microemulsion method using 1-butanol as organic agent and cetyltrimethylammonium bromide as surfactant. The aqueous phase was used to form the solution of three corresponding Co, Mo and Al precursor salts. The materials were prepared at different solution concentrations in order to obtain different metal contents. All samples were char-acterized by X-ray diffraction, Raman spectroscopy, nuclear magnetic resonance and nitrogen physisorption. A chemical species distribution study was performed to establish conditions of preparation and the preponderant species present in solution as a function of pH. The materials obtained present high surface areas which decrease as the metal content (Co + Mo) increases. All samples with the exception of that with the highest metal content were amorphous as shown by X-ray diffraction. By Raman spectroscopy, Mo-O-Mo and MoO 2t species were observed in all calcined samples. Mo-O-Co, Al-O-Mo, monomers and heteropolymolybdates were observed for the lower metal content samples, and the formation of CoMoO 4 and aluminum molybdate species for the higher metal contents. These results suggest that the materials with lower metal loading have species that are easily sulfidable and provide high activity in hydrodesulfurization reactions. A model for the interaction of the species in the aqueous phase of the micelle is presented.