Prediction based convolution neural network acceleration: work-in-progress

Y. Yao, Zhonghai Lu
{"title":"Prediction based convolution neural network acceleration: work-in-progress","authors":"Y. Yao, Zhonghai Lu","doi":"10.1145/3125501.3125523","DOIUrl":null,"url":null,"abstract":"Although intra-layer parallelism is commonly used to expedite CNN execution, it is difficult to achieve inter-layer parallelism because of data dependence between layers. In the paper, we propose a two-phase prediction and correction mechanism to break the data dependence between CNN layers so as to enable inter-layer parallelism. Our technique achieves one more order of magnitude (from the order of 10 to the order of 100) CNN acceleration compared to other three state-of-the-art GPU based CNN acceleration mechanisms.","PeriodicalId":259093,"journal":{"name":"Proceedings of the 2017 International Conference on Compilers, Architectures and Synthesis for Embedded Systems Companion","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 International Conference on Compilers, Architectures and Synthesis for Embedded Systems Companion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3125501.3125523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Although intra-layer parallelism is commonly used to expedite CNN execution, it is difficult to achieve inter-layer parallelism because of data dependence between layers. In the paper, we propose a two-phase prediction and correction mechanism to break the data dependence between CNN layers so as to enable inter-layer parallelism. Our technique achieves one more order of magnitude (from the order of 10 to the order of 100) CNN acceleration compared to other three state-of-the-art GPU based CNN acceleration mechanisms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于卷积神经网络加速预测的研究进展
虽然层内并行通常用于加快CNN的执行速度,但由于层之间的数据依赖,很难实现层间并行。在本文中,我们提出了一种两阶段的预测和校正机制来打破CNN层之间的数据依赖,从而实现层间并行。与其他三种基于GPU的CNN加速机制相比,我们的技术实现了一个数量级(从10的数量级到100的数量级)的CNN加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enabling reliable main memory using STT-MRAM via restore-aware memory management: work-in-progress Multi-grained performance estimation for MPSoC compilers: work-in-progress Prediction based convolution neural network acceleration: work-in-progress Towards efficient quantized neural network inference on mobile devices: work-in-progress A quantifiable approach to approximate computing: special session
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1