Towards efficient quantized neural network inference on mobile devices: work-in-progress

Yaman Umuroglu, Magnus Jahre
{"title":"Towards efficient quantized neural network inference on mobile devices: work-in-progress","authors":"Yaman Umuroglu, Magnus Jahre","doi":"10.1145/3125501.3125528","DOIUrl":null,"url":null,"abstract":"From voice recognition to object detection, Deep Neural Networks (DNNs) are steadily getting better at extracting information from complex raw data. Combined with the popularity of mobile computing and the rise of the Internet-of-Things (IoT), there is enormous potential for widespread deployment of intelligent devices, but a computational challenge remains. A modern DNN can require billions of floating point operations to classify a single image, which is far too costly for energy-constrained mobile devices. Offloading DNNs to powerful servers in the cloud is only a limited solution, as it requires significant energy for data transfer and cannot address applications with low-latency requirements such as augmented reality or navigation for autonomous drones.","PeriodicalId":259093,"journal":{"name":"Proceedings of the 2017 International Conference on Compilers, Architectures and Synthesis for Embedded Systems Companion","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 International Conference on Compilers, Architectures and Synthesis for Embedded Systems Companion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3125501.3125528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

From voice recognition to object detection, Deep Neural Networks (DNNs) are steadily getting better at extracting information from complex raw data. Combined with the popularity of mobile computing and the rise of the Internet-of-Things (IoT), there is enormous potential for widespread deployment of intelligent devices, but a computational challenge remains. A modern DNN can require billions of floating point operations to classify a single image, which is far too costly for energy-constrained mobile devices. Offloading DNNs to powerful servers in the cloud is only a limited solution, as it requires significant energy for data transfer and cannot address applications with low-latency requirements such as augmented reality or navigation for autonomous drones.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在移动设备上实现高效量化神经网络推理:正在进行中
从语音识别到目标检测,深度神经网络(dnn)在从复杂的原始数据中提取信息方面正稳步进步。结合移动计算的普及和物联网(IoT)的兴起,智能设备的广泛部署具有巨大的潜力,但计算方面的挑战仍然存在。现代深度神经网络可能需要数十亿次浮点运算才能对一张图像进行分类,对于能量有限的移动设备来说,这太昂贵了。将dnn卸载到云中的强大服务器只是一个有限的解决方案,因为它需要大量的能量进行数据传输,并且无法解决低延迟要求的应用程序,例如增强现实或自主无人机导航。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enabling reliable main memory using STT-MRAM via restore-aware memory management: work-in-progress Multi-grained performance estimation for MPSoC compilers: work-in-progress Prediction based convolution neural network acceleration: work-in-progress Towards efficient quantized neural network inference on mobile devices: work-in-progress A quantifiable approach to approximate computing: special session
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1