A Fast Two-Parameter CFAR Algorithm Based on FFT for Ship Detection in Large-Scale SAR Images

Can Yao, C. Li, Xue Jin, Lei Zhang
{"title":"A Fast Two-Parameter CFAR Algorithm Based on FFT for Ship Detection in Large-Scale SAR Images","authors":"Can Yao, C. Li, Xue Jin, Lei Zhang","doi":"10.1109/ICICSP55539.2022.10050663","DOIUrl":null,"url":null,"abstract":"Ship target detection in synthetic aperture radar (SAR) images via the classical constant false alarm rate (CFAR) algorithm is an important technique. However, each pixel in local sliding window detection is involved in parameter estimation multiple times, which leads to computational inefficiency, especially for large-scale SAR images. To solve the above issue, this paper proposes a fast two-parameter CFAR algorithm based on fast Fourier transform (FFT), named F2T-CFAR. First, FFT is employed to replace the sliding window detection and statistical properties are obtained by global computation. Second, we extract potential target points from the global detection results by threshold decision and subsequently cluster these potential points using the density-based spatial clustering of applications with noise (DBSCAN) algorithm to obtain the final ship target centers. Our F2T-CFAR significantly improves the computational speed compared to the two-threshold CFAR method. Experiments on the measured large-scale SAR images demonstrate the effectiveness of our F2T-CFAR algorithm.","PeriodicalId":281095,"journal":{"name":"2022 5th International Conference on Information Communication and Signal Processing (ICICSP)","volume":"84 11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 5th International Conference on Information Communication and Signal Processing (ICICSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICSP55539.2022.10050663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Ship target detection in synthetic aperture radar (SAR) images via the classical constant false alarm rate (CFAR) algorithm is an important technique. However, each pixel in local sliding window detection is involved in parameter estimation multiple times, which leads to computational inefficiency, especially for large-scale SAR images. To solve the above issue, this paper proposes a fast two-parameter CFAR algorithm based on fast Fourier transform (FFT), named F2T-CFAR. First, FFT is employed to replace the sliding window detection and statistical properties are obtained by global computation. Second, we extract potential target points from the global detection results by threshold decision and subsequently cluster these potential points using the density-based spatial clustering of applications with noise (DBSCAN) algorithm to obtain the final ship target centers. Our F2T-CFAR significantly improves the computational speed compared to the two-threshold CFAR method. Experiments on the measured large-scale SAR images demonstrate the effectiveness of our F2T-CFAR algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于FFT的大尺度SAR图像船舶检测快速双参数CFAR算法
在合成孔径雷达(SAR)图像中,经典的恒虚警率(CFAR)算法是舰船目标检测的重要技术。然而,局部滑动窗口检测中的每个像素都涉及多次参数估计,导致计算效率低下,特别是对于大尺度SAR图像。为了解决上述问题,本文提出了一种基于快速傅里叶变换(FFT)的快速双参数CFAR算法,命名为F2T-CFAR。首先,采用FFT代替滑动窗口检测,通过全局计算得到统计特性;其次,通过阈值判定从全局检测结果中提取潜在目标点,然后利用基于密度的空间聚类算法(DBSCAN)对这些潜在点进行聚类,得到最终的舰船目标中心;与双阈值CFAR方法相比,我们的F2T-CFAR方法显著提高了计算速度。在实测大尺度SAR图像上的实验验证了F2T-CFAR算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Waveform Design and Processing for Joint Detection and Communication Based on MIMO Sonar Systems Joint Angle and Range Estimation with FDA-MIMO Radar in Unknown Mutual Coupling Acoustic Scene Classification for Bone-Conducted Sound Using Transfer Learning and Feature Fusion A Novel Machine Learning Algorithm: Music Arrangement and Timbre Transfer System An Element Selection Enhanced Hybrid Relay-RIS Assisted Communication System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1