Gravity Based Foundations for Offshore Wind Turbines: Cyclic Loading and Liquefaction

Martin L. van Wijngaarden, P. Meijers, T. Raaijmakers, R. Jager, K. Gavin
{"title":"Gravity Based Foundations for Offshore Wind Turbines: Cyclic Loading and Liquefaction","authors":"Martin L. van Wijngaarden, P. Meijers, T. Raaijmakers, R. Jager, K. Gavin","doi":"10.1115/OMAE2018-77082","DOIUrl":null,"url":null,"abstract":"In current modelling of excess pore pressures (EPPs) below marine structures, the irregular nature of cyclic loads and the real storm development are not taken into account. The effect of the irregular cyclic loading in time is investigated in this paper. The wind, wave and turbine loads on a gravity based foundation (GBF) are derived in the frequency domain. The real storm development is based on the CoastDat dataset. The load input is used in a program which takes the generation and dissipation of pore pressures under cyclic loading into account. Also, densification is included. The results show that the first storm in the lifetime of the GBF results in the highest EPPs. The EPP decreases in time, due to significant dissipation and densification during the build-up of a storm. Therefore, not the storms with the largest cyclic loads but the storms with the fastest build-up result in the highest EPPs, since this limits the process of densification. A large scatter is found in the maximum values of EPPs due to the irregular nature of the loads.","PeriodicalId":106551,"journal":{"name":"Volume 9: Offshore Geotechnics; Honoring Symposium for Professor Bernard Molin on Marine and Offshore Hydrodynamics","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: Offshore Geotechnics; Honoring Symposium for Professor Bernard Molin on Marine and Offshore Hydrodynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/OMAE2018-77082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In current modelling of excess pore pressures (EPPs) below marine structures, the irregular nature of cyclic loads and the real storm development are not taken into account. The effect of the irregular cyclic loading in time is investigated in this paper. The wind, wave and turbine loads on a gravity based foundation (GBF) are derived in the frequency domain. The real storm development is based on the CoastDat dataset. The load input is used in a program which takes the generation and dissipation of pore pressures under cyclic loading into account. Also, densification is included. The results show that the first storm in the lifetime of the GBF results in the highest EPPs. The EPP decreases in time, due to significant dissipation and densification during the build-up of a storm. Therefore, not the storms with the largest cyclic loads but the storms with the fastest build-up result in the highest EPPs, since this limits the process of densification. A large scatter is found in the maximum values of EPPs due to the irregular nature of the loads.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
海上风力涡轮机的重力基础:循环载荷和液化
在目前的海洋结构下超孔隙压力(epp)模型中,没有考虑到循环荷载的不规则性和实际风暴的发展。本文研究了非规则循环荷载在时间上的影响。在频域上推导了重力基础上的风荷载、波浪荷载和涡轮荷载。真实的风暴发展是基于海岸数据集。在考虑循环荷载作用下孔隙压力的产生和消散的程序中,使用了荷载输入。另外,致密化也包括在内。结果表明,在GBF的生命周期中,第一次风暴产生的EPPs最高。EPP随着时间的推移而减少,这是由于在风暴形成过程中显著的消散和致密化。因此,不是具有最大循环荷载的风暴,而是具有最快积累的风暴导致最高的epp,因为这限制了致密化过程。由于负载的不规则性,在EPPs的最大值中发现了很大的分散。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experimental Study of Water Cutoff Performance of Steel Pipe Sheet Piles With Interlocked Joint Field Study on the Effects of Impact Frequency on the Axial and Lateral Capacity of Driven Pipe Piles in Sand Scale Model Investigations on Vibro Pile Driving Anchor Sharing in Sands: Centrifuge Modelling and Soil Element Testing to Characterise Multi-Directional Loadings A 2D Experimental and Numerical Study of Moonpools With Recess
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1