{"title":"Transition maximization techniques for enhancing the two-pattern fault coverage of pseudorandom test pattern generators","authors":"B. Cockburn, A.L.-C. Kwong","doi":"10.1109/VTEST.1998.670905","DOIUrl":null,"url":null,"abstract":"This paper presents simulation evidence supporting the use of bit transition maximization techniques in the design of hardware test pattern generators (TPGs). Bit transition maximization is a heuristic technique that involves increasing the probability that a bit will change values going from one test pattern to the next. For most of the ISCAS-85 benchmarks and many of the ISCAS-89 benchmarks bit transition maximization enhances the fault coverage of two-pattern faults such as gate delay faults and CMOS transistor stuck-open faults. It achieves these benefits without reducing the fault coverage with respect to classical stuck-at faults.","PeriodicalId":128521,"journal":{"name":"Proceedings. 16th IEEE VLSI Test Symposium (Cat. No.98TB100231)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 16th IEEE VLSI Test Symposium (Cat. No.98TB100231)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTEST.1998.670905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
This paper presents simulation evidence supporting the use of bit transition maximization techniques in the design of hardware test pattern generators (TPGs). Bit transition maximization is a heuristic technique that involves increasing the probability that a bit will change values going from one test pattern to the next. For most of the ISCAS-85 benchmarks and many of the ISCAS-89 benchmarks bit transition maximization enhances the fault coverage of two-pattern faults such as gate delay faults and CMOS transistor stuck-open faults. It achieves these benefits without reducing the fault coverage with respect to classical stuck-at faults.