Cochleotopic/AMtopic (CAM) and Cochleotopic/Spectrotopic (CSM) map based sound sourcce separation using relaxatio oscillatory neurons

R. Pichevar, J. Rouat
{"title":"Cochleotopic/AMtopic (CAM) and Cochleotopic/Spectrotopic (CSM) map based sound sourcce separation using relaxatio oscillatory neurons","authors":"R. Pichevar, J. Rouat","doi":"10.1109/NNSP.2003.1318065","DOIUrl":null,"url":null,"abstract":"We use a two-layered unsupervised bio-inspired neural network to segregate sound sources, e.g. double-vowels or vowels intruded by nonstationary noise sources. The network consists of spiking neurons. The spiking neurons in both layers are modeled by relaxation oscillators. The first layer of the network is locally connected, while the second layer is a fully connected network. We show that in order to correctly segregate sound sources, we should either use Cochleotopic/AMtopic map (CAM) or Cochleotopic/Spectrotopic map (CSM) depending on the nature of the intruding sound source.","PeriodicalId":315958,"journal":{"name":"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.2003.1318065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

We use a two-layered unsupervised bio-inspired neural network to segregate sound sources, e.g. double-vowels or vowels intruded by nonstationary noise sources. The network consists of spiking neurons. The spiking neurons in both layers are modeled by relaxation oscillators. The first layer of the network is locally connected, while the second layer is a fully connected network. We show that in order to correctly segregate sound sources, we should either use Cochleotopic/AMtopic map (CAM) or Cochleotopic/Spectrotopic map (CSM) depending on the nature of the intruding sound source.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用松弛振荡神经元进行声源分离的耳蜗/AMtopic (CAM)和耳蜗/Spectrotopic (CSM)图谱
我们使用一种双层无监督生物神经网络来分离声源,例如双元音或被非平稳噪声源入侵的元音。这个网络由尖峰神经元组成。两层的尖峰神经元由松弛振荡器模拟。网络的第一层是本地连接,第二层是全连接网络。为了正确分离声源,我们应该根据入侵声源的性质,使用耳蜗/声位图(CAM)或耳蜗/声位图(CSM)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Computational decomposition of molecular signatures based on blind source separation of non-negative dependent sources with NMF A neural network method to improve prediction of protein-protein interaction sites in heterocomplexes Neuro-variational inversion of ocean color imagery Correlation-based feature detection using pulsed neural networks Computed simultaneous imaging of multiple biomarkers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1