A synthetic neural integrated circuit

L. Akers, M. Walker, R. Grondin, D. Ferry
{"title":"A synthetic neural integrated circuit","authors":"L. Akers, M. Walker, R. Grondin, D. Ferry","doi":"10.1109/CICC.1989.56743","DOIUrl":null,"url":null,"abstract":"Integrated circuits are approaching biological complexity in device count. Biological systems are fault tolerant, adaptive, and trainable, and the possibility exists for similar characteristics in ICs. The authors report a limited-interconnect, highly layered synthetic neural network that implements these ideals. These networks are specifically designed to scale to tens of thousands of processing elements on current production size dies. A compact analog cell, a training algorithm, and a limited-interconnect architecture which has demonstrated neuromorphic behavior are described","PeriodicalId":165054,"journal":{"name":"1989 Proceedings of the IEEE Custom Integrated Circuits Conference","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1989 Proceedings of the IEEE Custom Integrated Circuits Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICC.1989.56743","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Integrated circuits are approaching biological complexity in device count. Biological systems are fault tolerant, adaptive, and trainable, and the possibility exists for similar characteristics in ICs. The authors report a limited-interconnect, highly layered synthetic neural network that implements these ideals. These networks are specifically designed to scale to tens of thousands of processing elements on current production size dies. A compact analog cell, a training algorithm, and a limited-interconnect architecture which has demonstrated neuromorphic behavior are described
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
合成神经集成电路
集成电路在器件数量上接近生物复杂性。生物系统具有容错性、适应性和可训练性,在集成电路中存在类似特性的可能性。作者报告了一个有限互连,高度分层的合成神经网络,实现了这些理想。这些网络专门设计用于在当前生产尺寸的模具上扩展到数万个加工元件。描述了一种紧凑的模拟细胞、一种训练算法和一种有限互连结构,这种结构已经证明了神经形态行为
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A 1.4 ns/64 kb RAM with 85 ps/3680 logic gate array A gate matrix deformation and three-dimensional maze routing for dense MOS module generation A submicron CMOS triple level metal technology for ASIC applications Hot carrier effects on CMOS circuit performance The QML-an approach for qualifying ASICs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1