Dongsheng Yang, W. Deng, Bangan Liu, T. Siriburanon, K. Okada, A. Matsuzawa
{"title":"An LC-DCO based synthesizable injection-locked PLL with an FoM of −250.3dB","authors":"Dongsheng Yang, W. Deng, Bangan Liu, T. Siriburanon, K. Okada, A. Matsuzawa","doi":"10.1109/ESSCIRC.2016.7598276","DOIUrl":null,"url":null,"abstract":"This paper presents an LC-DCO based synthesizable injection-locked all-digital phase-locked loop. The superior noise performance of the LC-DCO enables the proposed synthesizable PLL to achieve top performance among the existing designs. Fabricated in a 65nm digital CMOS process, the chip occupies a core area of 0.12mm2. The measured integrated jitter is 0.142ps at a carrier of 3.0GHz while consuming a power of 4.6mW under 1V power supply. It achieves a figure of merit (FoM) of -250.3dB, which is the best for the synthesized PLL so far to the best knowledge of the authors.","PeriodicalId":246471,"journal":{"name":"ESSCIRC Conference 2016: 42nd European Solid-State Circuits Conference","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESSCIRC Conference 2016: 42nd European Solid-State Circuits Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSCIRC.2016.7598276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
This paper presents an LC-DCO based synthesizable injection-locked all-digital phase-locked loop. The superior noise performance of the LC-DCO enables the proposed synthesizable PLL to achieve top performance among the existing designs. Fabricated in a 65nm digital CMOS process, the chip occupies a core area of 0.12mm2. The measured integrated jitter is 0.142ps at a carrier of 3.0GHz while consuming a power of 4.6mW under 1V power supply. It achieves a figure of merit (FoM) of -250.3dB, which is the best for the synthesized PLL so far to the best knowledge of the authors.