Xuqiang Zheng, Chun Zhang, Fangxu Lv, Feng Zhao, Shigang Yue, Ziqiang Wang, Fule Li, Zhihua Wang
{"title":"A 5-50 Gb/s quarter rate transmitter with a 4-tap multiple-MUX based FFE in 65 nm CMOS","authors":"Xuqiang Zheng, Chun Zhang, Fangxu Lv, Feng Zhao, Shigang Yue, Ziqiang Wang, Fule Li, Zhihua Wang","doi":"10.1109/ESSCIRC.2016.7598303","DOIUrl":null,"url":null,"abstract":"This paper presents a 5-50 Gb/s quarter-rate transmitter with a 4-tap feed-forward equalization (FFE) based on multiple-multiplexer (MUX). A bandwidth enhanced 4:1 MUX with the capability of eliminating charge-sharing effect is proposed to increase the maximum operating speed. To produce the quarter-rate parallel data streams with appropriate delays, a compact latch array associated with an interleaved-retiming technique is designed. Implemented in 65 nm CMOS technology, the transmitter occupying an area of 0.6 mm2 achieves a maximum data rate of 50 Gb/s with an energy efficiency of 3.1 pJ/bit.","PeriodicalId":246471,"journal":{"name":"ESSCIRC Conference 2016: 42nd European Solid-State Circuits Conference","volume":"148 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESSCIRC Conference 2016: 42nd European Solid-State Circuits Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSCIRC.2016.7598303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
This paper presents a 5-50 Gb/s quarter-rate transmitter with a 4-tap feed-forward equalization (FFE) based on multiple-multiplexer (MUX). A bandwidth enhanced 4:1 MUX with the capability of eliminating charge-sharing effect is proposed to increase the maximum operating speed. To produce the quarter-rate parallel data streams with appropriate delays, a compact latch array associated with an interleaved-retiming technique is designed. Implemented in 65 nm CMOS technology, the transmitter occupying an area of 0.6 mm2 achieves a maximum data rate of 50 Gb/s with an energy efficiency of 3.1 pJ/bit.