Experimentally verified model of electrostatic energy harvester with internal impacts

B. Truong, C. Le, E. Halvorsen
{"title":"Experimentally verified model of electrostatic energy harvester with internal impacts","authors":"B. Truong, C. Le, E. Halvorsen","doi":"10.1109/MEMSYS.2015.7051162","DOIUrl":null,"url":null,"abstract":"This paper presents experimentally verified progress on modeling of MEMS electrostatic energy harvesters with internal impacts on transducing end-stops. The two-mechanical-degrees-of-freedom device dynamics are described by a set of ordinary differential equations which can be represented by an equivalent circuit and solved numerically in the time domain using a circuit simulator. The model accounts for the electromechanical nonlinearities, nonlinear damping upon impact at strong accelerations and the nonlinear squeezed-film damping force of the in-plane gap-closing transducer functioning as end-stop. The comparison between simulation and experimental results shows that these effects are crucial and gives good agreement for phenomenological damping parameters. This is a significant step towards accurate modeling of this complex system and is an important prerequisite to improve performance under displacement-limited operation.","PeriodicalId":337894,"journal":{"name":"2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2015.7051162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper presents experimentally verified progress on modeling of MEMS electrostatic energy harvesters with internal impacts on transducing end-stops. The two-mechanical-degrees-of-freedom device dynamics are described by a set of ordinary differential equations which can be represented by an equivalent circuit and solved numerically in the time domain using a circuit simulator. The model accounts for the electromechanical nonlinearities, nonlinear damping upon impact at strong accelerations and the nonlinear squeezed-film damping force of the in-plane gap-closing transducer functioning as end-stop. The comparison between simulation and experimental results shows that these effects are crucial and gives good agreement for phenomenological damping parameters. This is a significant step towards accurate modeling of this complex system and is an important prerequisite to improve performance under displacement-limited operation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
实验验证了具有内冲击的静电能量采集器模型
本文介绍了具有换能器端部内冲击的MEMS静电能量采集器建模的实验验证进展。用一组常微分方程来描述双机械自由度装置的动力学,这些常微分方程可以用等效电路表示,并在电路模拟器的时域内进行数值求解。该模型考虑了机电非线性、在强加速度下碰撞时的非线性阻尼以及作为端止点的面内闭口传感器的非线性压缩膜阻尼力。仿真结果与实验结果的比较表明,这些影响是至关重要的,并且对现象阻尼参数有很好的一致性。这是对该复杂系统进行精确建模的重要一步,也是在位移受限条件下提高性能的重要前提。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamically-balanced folded-beam suspensions Fusion of cantilever and diaphragm pressure sensors according to frequency characteristics A nanomachined tunable oscillator controlled by electrostatic and optical force A low-power MEMS tunable photonic ring resonator for reconfigurable optical networks Room temperature synthesis of silicon dioxide thin films for MEMS and silicon surface texturing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1