P. Meinerzhagen, S. Kundu, Andres F. Malavasi, Trang Nguyen, M. Khellah, J. Tschanz, V. De
{"title":"Min-Delay Margin/Error Detection and Correction for Flip-Flops and Pulsed Latches in 10-nm CMOS","authors":"P. Meinerzhagen, S. Kundu, Andres F. Malavasi, Trang Nguyen, M. Khellah, J. Tschanz, V. De","doi":"10.1109/ESSCIRC.2019.8902924","DOIUrl":null,"url":null,"abstract":"Min-delay (MID) error rates increase dramatically under aggressive voltage and technology scaling, limiting VMIN. Pulsed latches offer significant clocking power savings over flip-flops but further aggravate MID failures. This letter proposes MID margin/error detection and correction (M2/EDAC) for flip-flops and pulsed latches to reduce VMIN guard bands for voltage noise, temperature variation, and aging, and to detect and correct rare MID failures. Statistical data collection from a prototype in 10-nm tri-gate CMOS shows up to 122-mV VMIN reduction. Reliable pulsed latches enabled by M2/EDAC offer 12%–18% total dynamic power savings for logic blocks in 10-nm CMOS.","PeriodicalId":402948,"journal":{"name":"ESSCIRC 2019 - IEEE 45th European Solid State Circuits Conference (ESSCIRC)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESSCIRC 2019 - IEEE 45th European Solid State Circuits Conference (ESSCIRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSCIRC.2019.8902924","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Min-delay (MID) error rates increase dramatically under aggressive voltage and technology scaling, limiting VMIN. Pulsed latches offer significant clocking power savings over flip-flops but further aggravate MID failures. This letter proposes MID margin/error detection and correction (M2/EDAC) for flip-flops and pulsed latches to reduce VMIN guard bands for voltage noise, temperature variation, and aging, and to detect and correct rare MID failures. Statistical data collection from a prototype in 10-nm tri-gate CMOS shows up to 122-mV VMIN reduction. Reliable pulsed latches enabled by M2/EDAC offer 12%–18% total dynamic power savings for logic blocks in 10-nm CMOS.