A Simple and Fast Multi-instance Classification via Support Vector Machine

Zhiquan Qi, Ying-jie Tian, Yong Shi
{"title":"A Simple and Fast Multi-instance Classification via Support Vector Machine","authors":"Zhiquan Qi, Ying-jie Tian, Yong Shi","doi":"10.1109/WI-IAT.2012.50","DOIUrl":null,"url":null,"abstract":"In this paper, we proposed a Simple and Fast Multi-Instance Classification Via Support Vector Machine(called Fast MI-SVM). Compared with the other conventional Multi-Instance learning method, our method is able to deal with multi-instance learning problem by only solving a quadratic programming problem. So the training time of Fast MI-SVM is very fast. All numerical experiments on benchmark datasets show the feasibility and validity of the proposed method.","PeriodicalId":220218,"journal":{"name":"2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI-IAT.2012.50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we proposed a Simple and Fast Multi-Instance Classification Via Support Vector Machine(called Fast MI-SVM). Compared with the other conventional Multi-Instance learning method, our method is able to deal with multi-instance learning problem by only solving a quadratic programming problem. So the training time of Fast MI-SVM is very fast. All numerical experiments on benchmark datasets show the feasibility and validity of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于支持向量机的简单快速多实例分类
本文提出了一种基于支持向量机的简单快速的多实例分类方法。与其他传统的多实例学习方法相比,我们的方法只需要求解一个二次规划问题就可以处理多实例学习问题。因此Fast MI-SVM的训练时间非常快。在基准数据集上的数值实验表明了该方法的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
相关文献
Efficacy of baricitinib in treating severe alopecia areata: a retrospective study
IF 1.8 4区 医学Archives of Dermatological ResearchPub Date : 2024-11-09 DOI: 10.1007/s00403-024-03498-9
Wen-fei Li, Ying Tu, Zheng-hui Yang, Pi-yan Hua, Qiu-yan Yao, Hua Gu
Demographic and Clinical Features of 1,641 Patients with Alopecia Areata, Alopecia Totalis, and Alopecia Universalis: A Single-Center Retrospective Study.
IF 1 Skin Appendage DisordersPub Date : 2021-01-01 DOI: 10.1159/000510880
Tugba Kevser Uzuncakmak, Burhan Engin, Server Serdaroglu, Yalcin Tuzun
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Conceptualization Effects on MEDLINE Documents Classification Using Rocchio Method Keyword Proximity Search over Large and Complex RDF Database Cognitive-Educational Constraints for Socially-Relevant MALL Technologies Mining Criminal Networks from Chat Log Inferring User Context from Spatio-Temporal Pattern Mining for Mobile Application Services
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1