An implantable neuroprocessor for multichannel compressive neural recording and on-the-fly spike sorting with wireless telemetry

Fei Zhang, M. Aghagolzadeh, K. Oweiss
{"title":"An implantable neuroprocessor for multichannel compressive neural recording and on-the-fly spike sorting with wireless telemetry","authors":"Fei Zhang, M. Aghagolzadeh, K. Oweiss","doi":"10.1109/BIOCAS.2010.5709556","DOIUrl":null,"url":null,"abstract":"In this work, a fully implantable and scalable neuroprocessor has been designed to process neural recordings in awake behaving animals. The neuroprocessor operates at 6.4 MHz to process neural signals from 32 microelectrode channels sampled at 25 KHz and transmits only the critical neural information over a 1 Mbps wireless channel in order to meet the stringent hardware and communication constraints imposed on an implantable device. The neuroprocessor can be programmed to compress neural data using a sparse representation of neural signals via lifting discrete wavelet transform (DWT) and/or perform on-the-fly spike sorting on the compressed data stream if followed by a “smart” thresholding mechanism. This unique feature reduces the overall system latency and permit instantaneous decoding of neural signals to take place in real-time. The neuroprocessor therefore uses the limited telemetry bandwidth more efficiently while preserving important information in the neural data, and hence improves the practicality and viability of implantable microelectrode arrays to accelerate their deployment in clinical applications of brain-machine interfaces.","PeriodicalId":440499,"journal":{"name":"2010 Biomedical Circuits and Systems Conference (BioCAS)","volume":"145 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Biomedical Circuits and Systems Conference (BioCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2010.5709556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

In this work, a fully implantable and scalable neuroprocessor has been designed to process neural recordings in awake behaving animals. The neuroprocessor operates at 6.4 MHz to process neural signals from 32 microelectrode channels sampled at 25 KHz and transmits only the critical neural information over a 1 Mbps wireless channel in order to meet the stringent hardware and communication constraints imposed on an implantable device. The neuroprocessor can be programmed to compress neural data using a sparse representation of neural signals via lifting discrete wavelet transform (DWT) and/or perform on-the-fly spike sorting on the compressed data stream if followed by a “smart” thresholding mechanism. This unique feature reduces the overall system latency and permit instantaneous decoding of neural signals to take place in real-time. The neuroprocessor therefore uses the limited telemetry bandwidth more efficiently while preserving important information in the neural data, and hence improves the practicality and viability of implantable microelectrode arrays to accelerate their deployment in clinical applications of brain-machine interfaces.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种植入式神经处理器,用于多通道压缩神经记录和无线遥测的动态尖峰排序
在这项工作中,一个完全可植入和可扩展的神经处理器被设计用来处理清醒行为动物的神经记录。该神经处理器的工作频率为6.4 MHz,处理来自32个采样频率为25 KHz的微电极通道的神经信号,并仅通过1 Mbps的无线通道传输关键神经信息,以满足植入式设备严格的硬件和通信限制。神经处理器可以通过编程,通过提升离散小波变换(DWT)使用神经信号的稀疏表示来压缩神经数据,或者在压缩数据流上执行动态尖峰排序(如果遵循“智能”阈值机制)。这种独特的功能减少了整个系统的延迟,并允许实时进行神经信号的瞬时解码。因此,神经处理器更有效地利用有限的遥测带宽,同时保留神经数据中的重要信息,从而提高可植入微电极阵列的实用性和可行性,加速其在脑机接口临床应用中的部署。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A nonlinear signal-specific ADC for efficient neural recording A reconfigurable neural spike recording channel with feature extraction capabilities Adaptive threshold spike detection using stationary wavelet transform for neural recording implants Design and evaluation of a capacitively coupled sensor readout circuit, toward contact-less ECG and EEG A spike based 3D imager chip using a mixed mode encoding readout
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1