A new model for the phototransistor

S. Tan, W.T. Chen, M. Chu, W. Lour
{"title":"A new model for the phototransistor","authors":"S. Tan, W.T. Chen, M. Chu, W. Lour","doi":"10.1109/IWJT.2004.1306826","DOIUrl":null,"url":null,"abstract":"We reported the fabrication, characterization and modeling of a heterojunction phototransistor. Both Gummel-plot and common-emitter configurations are employed to characterize HPT's performances and to clearly demonstrate what difference between a voltage-biased and a current-biased HPT. The performances of the voltage- and current-source biased HPTs were also compared to the results from a newly proposed HPT model and related circuit with good agreement found. Although an independent voltage source pushes HBT's operating point to a higher current level. where the dc current gain is larger, however, the photocurrent generated within B-C region gives very little contribution to final collector current. The optical gain obtained from high-voltage-source biased HPT is even smaller than that of a HPT with a floating base. In addition, a modified extended Ebers-Moll model was successfully used to analyze what the common-emitter characteristics and Gummel-plot differences with input base current as well as base-en-Litter voltage between the dark and illumination situation.","PeriodicalId":342825,"journal":{"name":"The Fourth International Workshop on Junction Technology, 2004. IWJT '04.","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Fourth International Workshop on Junction Technology, 2004. IWJT '04.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWJT.2004.1306826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We reported the fabrication, characterization and modeling of a heterojunction phototransistor. Both Gummel-plot and common-emitter configurations are employed to characterize HPT's performances and to clearly demonstrate what difference between a voltage-biased and a current-biased HPT. The performances of the voltage- and current-source biased HPTs were also compared to the results from a newly proposed HPT model and related circuit with good agreement found. Although an independent voltage source pushes HBT's operating point to a higher current level. where the dc current gain is larger, however, the photocurrent generated within B-C region gives very little contribution to final collector current. The optical gain obtained from high-voltage-source biased HPT is even smaller than that of a HPT with a floating base. In addition, a modified extended Ebers-Moll model was successfully used to analyze what the common-emitter characteristics and Gummel-plot differences with input base current as well as base-en-Litter voltage between the dark and illumination situation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新型的光电晶体管
本文报道了一种异质结光电晶体管的制备、表征和建模。Gummel-plot和共发射极配置都被用来描述HPT的性能,并清楚地展示了电压偏置和电流偏置HPT之间的区别。将电压源和电流源偏置HPT的性能与新提出的HPT模型和相关电路的结果进行了比较,发现两者具有良好的一致性。虽然一个独立的电压源推动HBT的工作点到一个更高的电流水平。当直流电增益较大时,B-C区产生的光电流对最终集电极电流的贡献很小。高压源偏置HPT获得的光学增益甚至比带浮动基的HPT还要小。此外,利用改进的扩展Ebers-Moll模型成功地分析了在黑暗和照明情况下,共发射极特性和Gummel-plot随输入基极电流和基极电压的差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
USJ formation & characterization for 65nm node and beyond Low temperature activated Ga and Sb ion-implanted shallow junctions A precise and efficient analytical method of realistic dopant fluctuations in shallow junction formation Accurate determination of ultra-shallow junction sheet resistance with a non-penetrating four point probe Growth mechanism of epitaxial NiSi/sub 2/ layer in the Ni/Ti/Si(001) contact for atomically flat interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1