R. Canegallo, A. Fazzi, L. Ciccarelli, L. Magagni, F. Natali, P. Rolandi, E. Jung, L. Cioccio, R. Guerrieri
{"title":"3D Capacitive Interconnections for High Speed Interchip Communication","authors":"R. Canegallo, A. Fazzi, L. Ciccarelli, L. Magagni, F. Natali, P. Rolandi, E. Jung, L. Cioccio, R. Guerrieri","doi":"10.1109/CICC.2007.4405670","DOIUrl":null,"url":null,"abstract":"A 3D interconnection scheme based on capacitive coupling for high speed chip to chip communication has been implemented in a 0.13 mum CMOS process. This paper provides detailed design example for both synchronous and asynchronous transmitter and receiver circuits. The first approach shows with electrodes 15 times 15 mum2 a wide range of operating frequency up to 900 MHz with an energy consumption of 41fJ/bit. In the asynchronous scheme we demonstrate with electrodes 8 times 8 mum2 a vertical propagation of clock at 1.7 GHz and a propagation delay of 420 ps for general purpose signal with energy consumption of 80 f J/bit. Functionality and performance have been demonstrated by using both die-level and wafer-level assembly flows and BER measurements show the reliability of these AC interconnections with no error on more than 1013 bits transmitted.","PeriodicalId":130106,"journal":{"name":"2007 IEEE Custom Integrated Circuits Conference","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Custom Integrated Circuits Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICC.2007.4405670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
A 3D interconnection scheme based on capacitive coupling for high speed chip to chip communication has been implemented in a 0.13 mum CMOS process. This paper provides detailed design example for both synchronous and asynchronous transmitter and receiver circuits. The first approach shows with electrodes 15 times 15 mum2 a wide range of operating frequency up to 900 MHz with an energy consumption of 41fJ/bit. In the asynchronous scheme we demonstrate with electrodes 8 times 8 mum2 a vertical propagation of clock at 1.7 GHz and a propagation delay of 420 ps for general purpose signal with energy consumption of 80 f J/bit. Functionality and performance have been demonstrated by using both die-level and wafer-level assembly flows and BER measurements show the reliability of these AC interconnections with no error on more than 1013 bits transmitted.