{"title":"A compact, 37% fractional bandwidth millimeter-wave phase shifter using a wideband lange coupler for 60-GHz and E-band systems","authors":"Navid Hosseinzadeh, J. Buckwalter","doi":"10.1109/CSICS.2017.8240476","DOIUrl":null,"url":null,"abstract":"A wideband 57.7–84.2 GHz Phase Shifter is presented using a compact Lange coupler to generate in-phase and quadrature signal. The Lange coupler is followed by two balun transformers that provide the IQ vector modulation with differential I and Q signals. The implemented Phase Shifter demonstrates an average 6-dB insertion loss and 5-dB gain variation. The measured average rms phase and gain errors are 7 degrees and 1 dB, respectively. The phase shifter is implemented in GlobalFoundries 45-nm SOI CMOS technology using a trap-rich substrate. The chip area is 385 μm × 285 μm and the Phase Shifter consumes less than 17 mW. To the best of authors knowledge, this is the first phase shifter that covers both 60 GHz band and E-band frequencies with a fractional bandwidth of 37%.","PeriodicalId":129729,"journal":{"name":"2017 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)","volume":"157 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSICS.2017.8240476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
A wideband 57.7–84.2 GHz Phase Shifter is presented using a compact Lange coupler to generate in-phase and quadrature signal. The Lange coupler is followed by two balun transformers that provide the IQ vector modulation with differential I and Q signals. The implemented Phase Shifter demonstrates an average 6-dB insertion loss and 5-dB gain variation. The measured average rms phase and gain errors are 7 degrees and 1 dB, respectively. The phase shifter is implemented in GlobalFoundries 45-nm SOI CMOS technology using a trap-rich substrate. The chip area is 385 μm × 285 μm and the Phase Shifter consumes less than 17 mW. To the best of authors knowledge, this is the first phase shifter that covers both 60 GHz band and E-band frequencies with a fractional bandwidth of 37%.