T. Yoshida, T. Kudo, S. Kato, S. Miyazaki, S. Kiyono, K. Ikeda
{"title":"Strain sensitive resonant gate transistor","authors":"T. Yoshida, T. Kudo, S. Kato, S. Miyazaki, S. Kiyono, K. Ikeda","doi":"10.1109/MEMSYS.1995.472602","DOIUrl":null,"url":null,"abstract":"The strain sensitive resonant gate transistor working as a strain gauge has been developed. This device is fabricated by using surface micro-machining techniques and CMOS technology. Poly-Si bridge is fixed to the FET structures and the bridge is encapsulated by a Poly-Si cell in order to keep it inside the vacuum. When the strain is applied to the bridge, the resonant frequency is changed. The shift of resonant frequency is converted to the frequency of alternating drain current. Some basically technological problems are in order to realize high sensitivity and reliability in this sensor. As a result, the strain sensitive sensor with the characterizations of high gage factor, high Q factor, no-sticking and wide-working-range is developed. Characterizations of this sensor have been demonstrated.","PeriodicalId":273283,"journal":{"name":"Proceedings IEEE Micro Electro Mechanical Systems. 1995","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE Micro Electro Mechanical Systems. 1995","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.1995.472602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
The strain sensitive resonant gate transistor working as a strain gauge has been developed. This device is fabricated by using surface micro-machining techniques and CMOS technology. Poly-Si bridge is fixed to the FET structures and the bridge is encapsulated by a Poly-Si cell in order to keep it inside the vacuum. When the strain is applied to the bridge, the resonant frequency is changed. The shift of resonant frequency is converted to the frequency of alternating drain current. Some basically technological problems are in order to realize high sensitivity and reliability in this sensor. As a result, the strain sensitive sensor with the characterizations of high gage factor, high Q factor, no-sticking and wide-working-range is developed. Characterizations of this sensor have been demonstrated.