Morphological Reservoir Computing Hardware

Fabio Galán-Prado, J. Font-Rosselló, J. Rosselló
{"title":"Morphological Reservoir Computing Hardware","authors":"Fabio Galán-Prado, J. Font-Rosselló, J. Rosselló","doi":"10.1109/PATMOS.2019.8862100","DOIUrl":null,"url":null,"abstract":"In the recent years, Reservoir Computing arises as an emerging machine-learning technique that is highly suitable for time-series processing. In this work, we propose the implementation of reservoir computing systems in hardware via morphological neurons which make use of tropical algebra concepts that allow us to reduce the area cost in the neural synapses. The main consequence of using tropical algebra is that synapses multipliers are substituted by adders, with lower hardware requirements. The proposed design is synthesized in a Field-Programmable Gate Array (FPGA) and benchmarked against a time-series prediction task. The current approach achieves significant savings in terms of power and hardware, as well as an appreciable higher precision if compared to classical reservoir systems.","PeriodicalId":430458,"journal":{"name":"2019 29th International Symposium on Power and Timing Modeling, Optimization and Simulation (PATMOS)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 29th International Symposium on Power and Timing Modeling, Optimization and Simulation (PATMOS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PATMOS.2019.8862100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In the recent years, Reservoir Computing arises as an emerging machine-learning technique that is highly suitable for time-series processing. In this work, we propose the implementation of reservoir computing systems in hardware via morphological neurons which make use of tropical algebra concepts that allow us to reduce the area cost in the neural synapses. The main consequence of using tropical algebra is that synapses multipliers are substituted by adders, with lower hardware requirements. The proposed design is synthesized in a Field-Programmable Gate Array (FPGA) and benchmarked against a time-series prediction task. The current approach achieves significant savings in terms of power and hardware, as well as an appreciable higher precision if compared to classical reservoir systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
形态库计算硬件
近年来,油藏计算作为一种新兴的机器学习技术兴起,它非常适合于时间序列处理。在这项工作中,我们提出通过形态学神经元在硬件中实现储层计算系统,形态学神经元利用热带代数概念,使我们能够减少神经突触的面积成本。使用热带代数的主要结果是突触乘数被加法器取代,对硬件的要求更低。该设计在现场可编程门阵列(FPGA)中进行了综合,并针对时间序列预测任务进行了基准测试。与传统的储层系统相比,目前的方法在电力和硬件方面节省了大量成本,而且精度明显更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the Static CMOS Implementation of Magnitude Comparators [PATMOS 2019 Title Page] UVM-based Verification of a Digital PLL Using SystemVerilog Minimizing Power for Neural Network Training with Logarithm-Approximate Floating-Point Multiplier Stochastic Radial Basis Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1