{"title":"A comparison of Kanban-Like control strategies in a multi-product manufacturing system under erratic demand","authors":"C. E. Onyeocha, Joseph Khoury, J. Geraghty","doi":"10.1109/WSC.2013.6721644","DOIUrl":null,"url":null,"abstract":"Managing demand variability is a challenging task in manufacturing environments. Organizations that implemented Kanban-Like Production Control Strategies (PCS) especially in a multi-product manufacturing environment (MPME) plan a large volume of production authorization cards (PAC) to respond to demand variability. The issue associated with high PAC for each part-type in a MPME is proliferation of Work-In-Process (WIP). Shared Kanban Allocation Policy (S-KAP) was recently proposed in the literature to allow various part-types to share PAC. An advantages of this, is that when there is a corresponding shift in demand within part-types in a MPME, the system quickly responds by allocating PAC accordingly to part-types without recourse to re-planning/re-scheduling of PAC. This paper investigates the performance of a newly developed Basestock-Kanban-CONWIP (BK-CONWIP) Control Strategy in a four-product-five-stage manufacturing system with erratic demand. Simulation based optimization was used and it is shown that BK-CONWIP operating S-KAP will outperform other Kanban-Like PCS.","PeriodicalId":223717,"journal":{"name":"2013 Winter Simulations Conference (WSC)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Winter Simulations Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC.2013.6721644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
Managing demand variability is a challenging task in manufacturing environments. Organizations that implemented Kanban-Like Production Control Strategies (PCS) especially in a multi-product manufacturing environment (MPME) plan a large volume of production authorization cards (PAC) to respond to demand variability. The issue associated with high PAC for each part-type in a MPME is proliferation of Work-In-Process (WIP). Shared Kanban Allocation Policy (S-KAP) was recently proposed in the literature to allow various part-types to share PAC. An advantages of this, is that when there is a corresponding shift in demand within part-types in a MPME, the system quickly responds by allocating PAC accordingly to part-types without recourse to re-planning/re-scheduling of PAC. This paper investigates the performance of a newly developed Basestock-Kanban-CONWIP (BK-CONWIP) Control Strategy in a four-product-five-stage manufacturing system with erratic demand. Simulation based optimization was used and it is shown that BK-CONWIP operating S-KAP will outperform other Kanban-Like PCS.