{"title":"Efficient photometric stereo technique for three-dimensional surfaces with unknown BRDF","authors":"Li Shen, Takashi Machida, H. Takemura","doi":"10.1109/3DIM.2005.35","DOIUrl":null,"url":null,"abstract":"The present paper focuses on efficient inverse rendering using a photometric stereo technique for realistic surfaces. The technique primarily assumes the Lambertian reflection model only. For non-Lambertian surfaces, application of the technique to real surfaces in order to estimate 3D shape and spatially varying reflectance from sparse images remains difficult. In the present paper, we propose a new photometric stereo technique by which to efficiently recover a full surface model, starting from a small set of photographs. The proposed technique allows diffuse albedo to vary arbitrarily over surfaces while non-diffuse characteristics remain constant for a material. Specifically, the basic approach is to first recover the specular reflectance parameters of the surfaces by a novel optimization procedure. These parameters are then used to estimate the diffuse reflectance and surface normal for each point. As a result, a lighting-independent model of the geometry and reflectance properties of the surface is established using the proposed method, which can be used to re-render the images under novel lighting via traditional rendering methods.","PeriodicalId":170883,"journal":{"name":"Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM'05)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DIM.2005.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
The present paper focuses on efficient inverse rendering using a photometric stereo technique for realistic surfaces. The technique primarily assumes the Lambertian reflection model only. For non-Lambertian surfaces, application of the technique to real surfaces in order to estimate 3D shape and spatially varying reflectance from sparse images remains difficult. In the present paper, we propose a new photometric stereo technique by which to efficiently recover a full surface model, starting from a small set of photographs. The proposed technique allows diffuse albedo to vary arbitrarily over surfaces while non-diffuse characteristics remain constant for a material. Specifically, the basic approach is to first recover the specular reflectance parameters of the surfaces by a novel optimization procedure. These parameters are then used to estimate the diffuse reflectance and surface normal for each point. As a result, a lighting-independent model of the geometry and reflectance properties of the surface is established using the proposed method, which can be used to re-render the images under novel lighting via traditional rendering methods.