MMICs for next generation radar

A. Darwish, Ken Mcknight, J. Penn, E. Viveiros, A. Hedden, H. A. Hung
{"title":"MMICs for next generation radar","authors":"A. Darwish, Ken Mcknight, J. Penn, E. Viveiros, A. Hedden, H. A. Hung","doi":"10.1109/CSICS.2017.8240442","DOIUrl":null,"url":null,"abstract":"The rapid progress towards 5G wireless systems is accelerating the development of mm-wave semiconductor processes, broadband circuits, and system technologies. Similarly, next-generation radar is being expanded and redefined. Legacy radar systems are nearing the end of their life cycle and systems developers are aiming to upgrade their capability while reducing cost, size, and weight. Radar systems have requirements that result in technical circuit design challenges including high power, broadband, and low distortion. This paper focuses on MMIC design challenges specific to the design of next-generation radars that will operate in a crowded wireless environment, allow spectrum sharing, and dynamic frequency selection. Simulated and measured data are presented.","PeriodicalId":129729,"journal":{"name":"2017 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)","volume":"164 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSICS.2017.8240442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid progress towards 5G wireless systems is accelerating the development of mm-wave semiconductor processes, broadband circuits, and system technologies. Similarly, next-generation radar is being expanded and redefined. Legacy radar systems are nearing the end of their life cycle and systems developers are aiming to upgrade their capability while reducing cost, size, and weight. Radar systems have requirements that result in technical circuit design challenges including high power, broadband, and low distortion. This paper focuses on MMIC design challenges specific to the design of next-generation radars that will operate in a crowded wireless environment, allow spectrum sharing, and dynamic frequency selection. Simulated and measured data are presented.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于下一代雷达的mmic
5G无线系统的快速发展正在加速毫米波半导体工艺、宽带电路和系统技术的发展。同样,下一代雷达正在被扩展和重新定义。传统雷达系统正接近其生命周期的终点,系统开发商的目标是在降低成本、尺寸和重量的同时升级其能力。雷达系统的要求导致了技术电路设计的挑战,包括高功率、宽带和低失真。本文重点介绍了下一代雷达设计中的MMIC设计挑战,这些雷达将在拥挤的无线环境中运行,允许频谱共享和动态频率选择。给出了仿真和实测数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Electro-thermal characterization of GaN HEMT on Si through selfconsistent energy balance-cellular Monte Carlo device simulations An AC coupled 10 Gb/s LVDS-compatible receiver with latched data biasing in 130 nm SiGe BiCMOS Raytheon high power density GaN technology UHF power conversion with GaN HEMT class-E2 topologies High speed data converters and their applications in optical communication system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1