Developing AI Agent with Functional Mockup Units for Car Autonomous Navigation

Al-Dakheeli Muhammed, Hadeer Essam, Beshoy Alber, Kirolos Samuel, Hagar Muhammed, M. Wagdy, Nouran Khaled, Hadeer Fawzy, Aya Tarek, Mohamed Abdel Salam, M. El-Kharashi
{"title":"Developing AI Agent with Functional Mockup Units for Car Autonomous Navigation","authors":"Al-Dakheeli Muhammed, Hadeer Essam, Beshoy Alber, Kirolos Samuel, Hagar Muhammed, M. Wagdy, Nouran Khaled, Hadeer Fawzy, Aya Tarek, Mohamed Abdel Salam, M. El-Kharashi","doi":"10.1109/icecs53924.2021.9665639","DOIUrl":null,"url":null,"abstract":"In this paper we present our implementation of a Deep Queue Network (DQN) AI Agent model for car autonomous navigation. The agent is capable of lane keeping without making any collisions with the surrounding vehicle and has learnt to move fast and safe in intersections. The model has been trained using two front camera sensors (depth and segmentation) and a collision detector. We also demonstrate how to connect this agent to functional mockup units (FMUs) to simulate the mechatronics part of the car. The deployment of our model has been demonstrated in a CARLA car simulator environment.","PeriodicalId":448558,"journal":{"name":"2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icecs53924.2021.9665639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we present our implementation of a Deep Queue Network (DQN) AI Agent model for car autonomous navigation. The agent is capable of lane keeping without making any collisions with the surrounding vehicle and has learnt to move fast and safe in intersections. The model has been trained using two front camera sensors (depth and segmentation) and a collision detector. We also demonstrate how to connect this agent to functional mockup units (FMUs) to simulate the mechatronics part of the car. The deployment of our model has been demonstrated in a CARLA car simulator environment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于功能实体单元的汽车自主导航AI智能体开发
本文提出了一种用于汽车自主导航的深度队列网络(DQN)人工智能代理模型的实现。该智能体能够在不与周围车辆发生碰撞的情况下保持车道,并学会了在十字路口快速安全行驶。该模型使用两个前置摄像头传感器(深度和分割)和一个碰撞检测器进行训练。我们还演示了如何将该代理连接到功能模型单元(fmu)以模拟汽车的机电一体化部分。我们的模型的部署已经在CARLA汽车模拟器环境中进行了演示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A gm/ID Design Methodology for 28 nm FD-SOI CMOS Resistive Feedback LNAs Dual Output Regulating Rectifier for an Implantable Neural Interface Frequency-Interleaved ADC with RF Equivalent Ideal Filter for Broadband Optical Communication Receivers Cardiovascular Segmentation Methods Based on Weak or no Prior A 0.2V 0.97nW 0.011mm2 Fully-Passive mHBC Tag Using Intermediate Interference Modulation in 65nm CMOS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1