Di Zhu, Yanzhi Wang, Siyu Yue, Q. Xie, Massoud Pedram, N. Chang
{"title":"Maximizing return on investment of a grid-connected hybrid electrical energy storage system","authors":"Di Zhu, Yanzhi Wang, Siyu Yue, Q. Xie, Massoud Pedram, N. Chang","doi":"10.1109/ASPDAC.2013.6509670","DOIUrl":null,"url":null,"abstract":"This paper is the first to present a comprehensive analysis of the profitability of the hybrid electrical energy storage (HEES) systems while further providing a HEES design and control optimization framework to maximize the total return on investment (ROI). The solution consists of two steps: (i) Derivation of an optimal HEES management policy to maximize the daily energy cost saving and (ii) Optimal design of the HEES system to maximize the amortized annual profit under budget and system volume constraints. We consider a HEES system comprised of lead-acid and Li-ion batteries for a case study. The optimal HEES system achieves an annual ROI of up to 60% higher than a lead-acid battery-only system (Li-ion battery-only) system.","PeriodicalId":297528,"journal":{"name":"2013 18th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"497 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 18th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPDAC.2013.6509670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27
Abstract
This paper is the first to present a comprehensive analysis of the profitability of the hybrid electrical energy storage (HEES) systems while further providing a HEES design and control optimization framework to maximize the total return on investment (ROI). The solution consists of two steps: (i) Derivation of an optimal HEES management policy to maximize the daily energy cost saving and (ii) Optimal design of the HEES system to maximize the amortized annual profit under budget and system volume constraints. We consider a HEES system comprised of lead-acid and Li-ion batteries for a case study. The optimal HEES system achieves an annual ROI of up to 60% higher than a lead-acid battery-only system (Li-ion battery-only) system.