Fully Compensated Self-Resonant Coil with Low E-field and Low Profile for Consumer Electronics Wireless Charging

Ruiyang Qin, Jie Li, Jingjing Sun, D. Costinett
{"title":"Fully Compensated Self-Resonant Coil with Low E-field and Low Profile for Consumer Electronics Wireless Charging","authors":"Ruiyang Qin, Jie Li, Jingjing Sun, D. Costinett","doi":"10.1109/APEC43580.2023.10131280","DOIUrl":null,"url":null,"abstract":"This paper details a fully compensated self-resonant coil (FSRC) with series LC resonance and reduced surface electric field for application in wireless power transfer for consumer electronics. By having a repeated series LC connection along the entire coil trace, the proposed series resonant structure achieves high-Q, low E-field, and thin profile simultaneously. The impact of ferrite shielding is also studied. Different E-field compensation coil geometries are studied, and a systematic design method is presented for optimal coil performance. Experimental tests verify the coil function, modeling, and design.","PeriodicalId":151216,"journal":{"name":"2023 IEEE Applied Power Electronics Conference and Exposition (APEC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Applied Power Electronics Conference and Exposition (APEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APEC43580.2023.10131280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper details a fully compensated self-resonant coil (FSRC) with series LC resonance and reduced surface electric field for application in wireless power transfer for consumer electronics. By having a repeated series LC connection along the entire coil trace, the proposed series resonant structure achieves high-Q, low E-field, and thin profile simultaneously. The impact of ferrite shielding is also studied. Different E-field compensation coil geometries are studied, and a systematic design method is presented for optimal coil performance. Experimental tests verify the coil function, modeling, and design.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
消费类电子产品无线充电用低电场低轮廓全补偿自谐振线圈
本文详细介绍了一种具有串联LC谐振和减小表面电场的全补偿自谐振线圈(FSRC),用于消费电子产品的无线电力传输。通过在整个线圈走线上重复串联LC连接,所提出的串联谐振结构可以同时实现高q、低e场和薄剖面。研究了铁氧体屏蔽的影响。研究了不同的电磁场补偿线圈几何形状,提出了一种优化线圈性能的系统设计方法。实验测试验证了线圈的功能、建模和设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Advanced Front-end Monitoring Scheme for Inductive Power Transfer Systems Based on Random Forest Regression An MPC based Power Management Method for Renewable Energy Hydrogen based DC Microgrids Overview of Machine Learning-Enabled Battery State Estimation Methods Ultra-Wideband Unidirectional Reset-Less Rogowski Coil Switch Current Sensor Topology for High-Frequency DC-DC Power Converters Common Source Inductance Compensation Technique for Dynamic Current Balancing in SiC MOSFETs Parallel Operations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1