Best feature selection for emotional speaker verification in i-vector representation

Lenka Máčková, Anton Ciamar, J. Juhár
{"title":"Best feature selection for emotional speaker verification in i-vector representation","authors":"Lenka Máčková, Anton Ciamar, J. Juhár","doi":"10.1109/RADIOELEK.2015.7129011","DOIUrl":null,"url":null,"abstract":"This paper is dedicated to the gender-dependent text-independent speaker verification from Slovak emotional speech. To investigate the best speaker verification performance different features were extracted in front-end processing, namely MFCC (Mel-Frequency Cepstral Coefficients), LPC (Linear Prediction Coefficients) and LPCC (Linear Prediction Cepstral Coefficients), and their mapping into low-dimensional vector of fixed length was performed following the principles of i-vector method. In evaluation process of i-vectors scoring following Mahalanobis distance metric was employed.","PeriodicalId":193275,"journal":{"name":"2015 25th International Conference Radioelektronika (RADIOELEKTRONIKA)","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 25th International Conference Radioelektronika (RADIOELEKTRONIKA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADIOELEK.2015.7129011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper is dedicated to the gender-dependent text-independent speaker verification from Slovak emotional speech. To investigate the best speaker verification performance different features were extracted in front-end processing, namely MFCC (Mel-Frequency Cepstral Coefficients), LPC (Linear Prediction Coefficients) and LPCC (Linear Prediction Cepstral Coefficients), and their mapping into low-dimensional vector of fixed length was performed following the principles of i-vector method. In evaluation process of i-vectors scoring following Mahalanobis distance metric was employed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于i向量表示的情感说话人验证的最佳特征选择
本文主要研究斯洛伐克语情感言语的性别独立文本说话人验证。为了研究最佳的说话人验证性能,在前端处理中提取了MFCC (Mel-Frequency Cepstral Coefficients)、LPC (Linear Prediction Coefficients)和LPCC (Linear Prediction Cepstral Coefficients)三个特征,并按照i-vector方法的原理将它们映射为固定长度的低维向量。在评价过程中,采用马氏距离度量法进行i向量评分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nonlinear noise estimation and compensation in GFDM based communication systems for cognitive radio networks Multilevel image thresholding by fireworks algorithm Railway network infrastructure model and localization of rolling stock position Proposed method of realization of RLCG meter Hardware and software front-end based on the USRP for experimental X-band Synthetic Aperture Radar
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1