Design methodology for a high insulation voltage power transmission function for IGBT gate driver

Sokchea Am, P. Lefranc, D. Frey, M. Ibrahim
{"title":"Design methodology for a high insulation voltage power transmission function for IGBT gate driver","authors":"Sokchea Am, P. Lefranc, D. Frey, M. Ibrahim","doi":"10.1109/APEC.2016.7468202","DOIUrl":null,"url":null,"abstract":"In this article, a design methodology for DC-DC converters with high insulation capabilities (up to 30kV) is proposed. The objective is to provide a power transmission function for IGBT drivers. To achieve this, a DC-DC full-bridge series-series (FB-SS) resonant converter with a high air gap transformer is selected and studied. This high air gap transformer (loosely coupled transformer (k)) is used for a high galvanic insulation system. Some transformer geometries are analyzed and compared for this specific application field. Therefore, in term of coupling coefficient of transformer (k), the analysis and the proposed investigations prove that pot core based transformers are suitable choices. Simulation results are presented and analyzed and experimental works are briefly described. Finally, the comparison between the simulation and experimental results are illustrated to validate the proposed methodology.","PeriodicalId":143091,"journal":{"name":"2016 IEEE Applied Power Electronics Conference and Exposition (APEC)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Applied Power Electronics Conference and Exposition (APEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APEC.2016.7468202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this article, a design methodology for DC-DC converters with high insulation capabilities (up to 30kV) is proposed. The objective is to provide a power transmission function for IGBT drivers. To achieve this, a DC-DC full-bridge series-series (FB-SS) resonant converter with a high air gap transformer is selected and studied. This high air gap transformer (loosely coupled transformer (k)) is used for a high galvanic insulation system. Some transformer geometries are analyzed and compared for this specific application field. Therefore, in term of coupling coefficient of transformer (k), the analysis and the proposed investigations prove that pot core based transformers are suitable choices. Simulation results are presented and analyzed and experimental works are briefly described. Finally, the comparison between the simulation and experimental results are illustrated to validate the proposed methodology.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
IGBT栅极驱动器高绝缘电压功率传输功能的设计方法
本文提出了一种具有高绝缘性能(高达30kV)的DC-DC变换器的设计方法。目标是为IGBT驱动程序提供动力传输功能。为了实现这一目标,选择并研究了带有高气隙变压器的DC-DC全桥串联(FB-SS)谐振变换器。这种高气隙变压器(松耦合变压器(k))用于高电流绝缘系统。针对这一特定应用领域,对一些变压器的几何形状进行了分析和比较。因此,从变压器的耦合系数(k)来看,分析和提出的研究表明,罐铁心变压器是合适的选择。给出了仿真结果并进行了分析,简要介绍了实验工作。最后,将仿真结果与实验结果进行了比较,验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel model predictive control algorithm to suppress the zero-sequence circulating currents for parallel three-phase voltage source inverters Mode transition control strategy for multiple inverter based distributed generators operating in grid-connected and stand-alone mode Stability analysis and improvement of solid state transformer (SST)-paralleled inverters system using negative impedance feedback control Active common-mode voltage reduction in a fault-tolerant three-phase inverter A sustained increase of input current distortion in active input current shapers to eliminate electrolytic capacitor for designing ac to dc HB-LED drivers for retrofit lamps applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1