Phishy? Detecting Phishing Emails Using ML and NLP

Md. Fazle Rabbi, Arifa I. Champa, M. Zibran
{"title":"Phishy? Detecting Phishing Emails Using ML and NLP","authors":"Md. Fazle Rabbi, Arifa I. Champa, M. Zibran","doi":"10.1109/SERA57763.2023.10197758","DOIUrl":null,"url":null,"abstract":"Phishing emails, a type of cyberattack using fake emails, are difficult to recognize due to sophisticated techniques employed by attackers. In this paper, we use a natural language processing (NLP) and machine learning (ML) based approach for detecting phishing emails. We compare the efficacy of six different ML algorithms for the purpose. An empirical evaluation on two public datasets demonstrates that our approach detects phishing emails with high accuracy, precision, and recall. The findings from this work are useful in devising more efficient techniques for recognizing and preventing phishing attacks.","PeriodicalId":211080,"journal":{"name":"2023 IEEE/ACIS 21st International Conference on Software Engineering Research, Management and Applications (SERA)","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/ACIS 21st International Conference on Software Engineering Research, Management and Applications (SERA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SERA57763.2023.10197758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Phishing emails, a type of cyberattack using fake emails, are difficult to recognize due to sophisticated techniques employed by attackers. In this paper, we use a natural language processing (NLP) and machine learning (ML) based approach for detecting phishing emails. We compare the efficacy of six different ML algorithms for the purpose. An empirical evaluation on two public datasets demonstrates that our approach detects phishing emails with high accuracy, precision, and recall. The findings from this work are useful in devising more efficient techniques for recognizing and preventing phishing attacks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Phishy吗?使用ML和NLP检测钓鱼邮件
网络钓鱼邮件是一种利用虚假电子邮件进行的网络攻击,由于攻击者采用了复杂的技术,因此很难识别。在本文中,我们使用基于自然语言处理(NLP)和机器学习(ML)的方法来检测网络钓鱼电子邮件。我们比较了六种不同ML算法的有效性。对两个公共数据集的实证评估表明,我们的方法检测网络钓鱼电子邮件具有很高的准确性、精度和召回率。这项工作的发现有助于设计更有效的技术来识别和防止网络钓鱼攻击。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhancing Students’ Job Seeking Process Through A Digital Badging System Classification of Multilingual Medical Documents using Deep Learning Data-Driven Smart Manufacturing Technologies for Prop Shop Systems Identifying Code Tampering Using A Bytecode Comparison Analysis Tool Evaluating the Performance of Containerized Webservers against web servers on Virtual Machines using Bombardment and Siege
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1