Attractivity Analysis for Recurrent Neural Networks with State-dependent External Input

Gang Baol, Kang Li, Zhenyan Song
{"title":"Attractivity Analysis for Recurrent Neural Networks with State-dependent External Input","authors":"Gang Baol, Kang Li, Zhenyan Song","doi":"10.1109/ICIST55546.2022.9926830","DOIUrl":null,"url":null,"abstract":"This paper introduces a novel kind of discontinu-ous neural networks which are with state-dependent switching external input. The switched external input is defined as a step function with respect to state value. Firstly, we derive a sufficient condition for network state attractivity by dividing the state space according to the swithed external input function and the activation function. At last, one numerical example verifies our results.","PeriodicalId":211213,"journal":{"name":"2022 12th International Conference on Information Science and Technology (ICIST)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 12th International Conference on Information Science and Technology (ICIST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIST55546.2022.9926830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces a novel kind of discontinu-ous neural networks which are with state-dependent switching external input. The switched external input is defined as a step function with respect to state value. Firstly, we derive a sufficient condition for network state attractivity by dividing the state space according to the swithed external input function and the activation function. At last, one numerical example verifies our results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有状态依赖外部输入的递归神经网络的吸引性分析
本文介绍了一种具有状态依赖切换外部输入的新型不连续神经网络。被切换的外部输入被定义为关于状态值的阶跃函数。首先,根据变换后的外部输入函数和激活函数划分状态空间,得到网络状态吸引的充分条件;最后通过一个数值算例验证了我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Marine Aquaculture Information Extraction from Optical Remote Sensing Images via MDOAU2-net A hybrid intelligent system for assisting low-vision people with over-the-counter medication Practical Adaptive Event-triggered Finite-time Stabilization for A Class of Second-order Systems Neurodynamics-based Iteratively Reweighted Convex Optimization for Sparse Signal Reconstruction A novel energy carbon emission codes based carbon efficiency evaluation method for enterprises
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1