A Comparative Study of Parametric Versus Non-Parametric Text Classification Algorithms

Mihaela Chistol
{"title":"A Comparative Study of Parametric Versus Non-Parametric Text Classification Algorithms","authors":"Mihaela Chistol","doi":"10.1109/DAS49615.2020.9108968","DOIUrl":null,"url":null,"abstract":"Evolution of modern technologies allowed to store the text in various digital formats such as e-mails, e-documents, libraries, etc. The amount of text data that is produced daily is increasing dramatically. Discovering useful patterns in text that can be represented in unstructured, semi-structured or structured format is a difficult task that requires a good understanding of machine learning algorithms. Finding a suitable algorithm for text mining tasks such as classification, clustering or natural language processing is a demanding situation that tests researchers’ abilities. This paper provides an overview of the text mining process also, presents a comparison of the performance and limitations of two predictive models generated using the parametric Naïve Bayes algorithm and nonparametric Deep Learning neural network. RapidMiner data science software platform has been used for models’ implementations and e-mail classification.","PeriodicalId":103267,"journal":{"name":"2020 International Conference on Development and Application Systems (DAS)","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Development and Application Systems (DAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DAS49615.2020.9108968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Evolution of modern technologies allowed to store the text in various digital formats such as e-mails, e-documents, libraries, etc. The amount of text data that is produced daily is increasing dramatically. Discovering useful patterns in text that can be represented in unstructured, semi-structured or structured format is a difficult task that requires a good understanding of machine learning algorithms. Finding a suitable algorithm for text mining tasks such as classification, clustering or natural language processing is a demanding situation that tests researchers’ abilities. This paper provides an overview of the text mining process also, presents a comparison of the performance and limitations of two predictive models generated using the parametric Naïve Bayes algorithm and nonparametric Deep Learning neural network. RapidMiner data science software platform has been used for models’ implementations and e-mail classification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
参数与非参数文本分类算法的比较研究
现代技术的发展使人们能够以各种数字格式存储文本,如电子邮件、电子文档、图书馆等。每天产生的文本数据量正在急剧增加。在文本中发现可用非结构化、半结构化或结构化格式表示的有用模式是一项艰巨的任务,需要对机器学习算法有很好的理解。为文本挖掘任务(如分类、聚类或自然语言处理)寻找合适的算法是对研究人员能力的考验。本文还概述了文本挖掘过程,并比较了使用参数Naïve贝叶斯算法和非参数深度学习神经网络生成的两种预测模型的性能和局限性。RapidMiner数据科学软件平台用于模型实现和电子邮件分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tuning of the PID Controller to the System with Maximum Stability Degree using Genetic Algorithm Omnidirectional Antenna with Complex Conjugate Impedance for Radio Meteor Detection DAS 2020 Index Authors DAS 2020 Cover Page Experimental Results on the Accuracy of the Myo Armband for Short-Range Pointing Tasks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1