{"title":"Incorporating Generalized Momentum Method to Accelerate Clustering Analysis of Complex Networks","authors":"Lun Hu, Xiangyu Pan, Xin Luo","doi":"10.1109/CASE49439.2021.9551512","DOIUrl":null,"url":null,"abstract":"Many complicated systems can be represented by complex networks. Their accurate clustering analysis plays a critical role in understanding their intrinsic organizations. An effective Fuzzy-based Clustering Algorithm for Networks (FCAN) has thus been developed. However, its major disadvantage is its slow convergence to optimal or near-optimal solutions. To overcome this problem, we make use of a generalized momentum method to accelerate it and accordingly propose a fast fuzzy clustering algorithm, namely F2 CAN. Experimental results on several practical datasets demonstrate that F2 CAN performed better than FCAN in terms of efficiency while maintaining the same-level accuracy. Hence, it is more promising to conduct an accurate and fast clustering analysis for complex networks.","PeriodicalId":232083,"journal":{"name":"2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASE49439.2021.9551512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Many complicated systems can be represented by complex networks. Their accurate clustering analysis plays a critical role in understanding their intrinsic organizations. An effective Fuzzy-based Clustering Algorithm for Networks (FCAN) has thus been developed. However, its major disadvantage is its slow convergence to optimal or near-optimal solutions. To overcome this problem, we make use of a generalized momentum method to accelerate it and accordingly propose a fast fuzzy clustering algorithm, namely F2 CAN. Experimental results on several practical datasets demonstrate that F2 CAN performed better than FCAN in terms of efficiency while maintaining the same-level accuracy. Hence, it is more promising to conduct an accurate and fast clustering analysis for complex networks.