Incorporating Generalized Momentum Method to Accelerate Clustering Analysis of Complex Networks

Lun Hu, Xiangyu Pan, Xin Luo
{"title":"Incorporating Generalized Momentum Method to Accelerate Clustering Analysis of Complex Networks","authors":"Lun Hu, Xiangyu Pan, Xin Luo","doi":"10.1109/CASE49439.2021.9551512","DOIUrl":null,"url":null,"abstract":"Many complicated systems can be represented by complex networks. Their accurate clustering analysis plays a critical role in understanding their intrinsic organizations. An effective Fuzzy-based Clustering Algorithm for Networks (FCAN) has thus been developed. However, its major disadvantage is its slow convergence to optimal or near-optimal solutions. To overcome this problem, we make use of a generalized momentum method to accelerate it and accordingly propose a fast fuzzy clustering algorithm, namely F2 CAN. Experimental results on several practical datasets demonstrate that F2 CAN performed better than FCAN in terms of efficiency while maintaining the same-level accuracy. Hence, it is more promising to conduct an accurate and fast clustering analysis for complex networks.","PeriodicalId":232083,"journal":{"name":"2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASE49439.2021.9551512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Many complicated systems can be represented by complex networks. Their accurate clustering analysis plays a critical role in understanding their intrinsic organizations. An effective Fuzzy-based Clustering Algorithm for Networks (FCAN) has thus been developed. However, its major disadvantage is its slow convergence to optimal or near-optimal solutions. To overcome this problem, we make use of a generalized momentum method to accelerate it and accordingly propose a fast fuzzy clustering algorithm, namely F2 CAN. Experimental results on several practical datasets demonstrate that F2 CAN performed better than FCAN in terms of efficiency while maintaining the same-level accuracy. Hence, it is more promising to conduct an accurate and fast clustering analysis for complex networks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于广义动量法的复杂网络聚类分析
许多复杂的系统可以用复杂的网络来表示。它们准确的聚类分析对理解它们的内在组织起着至关重要的作用。本文提出了一种有效的基于模糊的网络聚类算法(FCAN)。然而,它的主要缺点是收敛到最优或近最优解的速度很慢。为了克服这一问题,我们利用广义动量法对其进行加速,并在此基础上提出了一种快速模糊聚类算法F2 CAN。在几个实际数据集上的实验结果表明,在保持相同精度的情况下,F2 CAN在效率方面优于FCAN。因此,对复杂网络进行准确、快速的聚类分析更有前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Planar Pushing of Unknown Objects Using a Large-Scale Simulation Dataset and Few-Shot Learning A configurator for supervisory controllers of roadside systems Maintaining Connectivity in Multi-Rover Networks for Lunar Exploration Missions VLC-SE: Visual-Lengthwise Configuration Self-Estimator of Continuum Robots Multi-zone indoor temperature prediction based on Graph Attention Network and Gated Recurrent Unit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1