{"title":"Automated Energy-Efficient DNN Compression under Fine-Grain Accuracy Constraints","authors":"Ourania Spantidi, Iraklis Anagnostopoulos","doi":"10.23919/DATE56975.2023.10136954","DOIUrl":null,"url":null,"abstract":"Deep Neural Networks (DNNs) are utilized in a variety of domains, and their computation intensity is stressing embedded devices that comprise limited power budgets. DNN compression has been employed to achieve gains in energy consumption on embedded devices at the cost of accuracy loss. Compression-induced accuracy degradation is addressed through fine-tuning or retraining, which can not always be feasible. Additionally, state-of-art approaches compress DNNs with respect to the average accuracy achieved during inference, which can be a misleading evaluation metric. In this work, we explore more fine-grain properties of DNN inference accuracy, and generate energy-efficient DNNs using signal temporal logic and falsification jointly through pruning and quantization. We offer the ability to control at run-time the quality of the DNN inference, and propose an automated framework that can generate compressed DNNs that satisfy tight fine-grain accuracy requirements. The conducted evaluation on the ImageNet dataset has shown over 30% in energy consumption gains when compared to baseline DNNs.","PeriodicalId":340349,"journal":{"name":"2023 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/DATE56975.2023.10136954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Deep Neural Networks (DNNs) are utilized in a variety of domains, and their computation intensity is stressing embedded devices that comprise limited power budgets. DNN compression has been employed to achieve gains in energy consumption on embedded devices at the cost of accuracy loss. Compression-induced accuracy degradation is addressed through fine-tuning or retraining, which can not always be feasible. Additionally, state-of-art approaches compress DNNs with respect to the average accuracy achieved during inference, which can be a misleading evaluation metric. In this work, we explore more fine-grain properties of DNN inference accuracy, and generate energy-efficient DNNs using signal temporal logic and falsification jointly through pruning and quantization. We offer the ability to control at run-time the quality of the DNN inference, and propose an automated framework that can generate compressed DNNs that satisfy tight fine-grain accuracy requirements. The conducted evaluation on the ImageNet dataset has shown over 30% in energy consumption gains when compared to baseline DNNs.