HEp-2 Cells Classification Using Morphological Features and a Bundle of Local Gradient Descriptors

Ilias Theodorakopoulos, Dimitris Kastaniotis, G. Economou, S. Fotopoulos
{"title":"HEp-2 Cells Classification Using Morphological Features and a Bundle of Local Gradient Descriptors","authors":"Ilias Theodorakopoulos, Dimitris Kastaniotis, G. Economou, S. Fotopoulos","doi":"10.1109/I3A.2014.16","DOIUrl":null,"url":null,"abstract":"A system for automatic classification of staining patterns in IIF imaging is presented. A full pipeline of pre-processing, feature extraction and classification stages is designed in order to overcome specific challenges posed by the nature of the data. In the preprocessing stage the images are subjected to normalization and de-noising using a sparse representation-based technique. A set morphological features, extracted using multi-level thresholding, is combined with a bundle of local gradient descriptors, selected so as to encode textural and structural information of the fluorescent patterns in multiple scales. The proposed method was evaluated using a dataset with over 10K images achieving over 90 percent of classification accuracy.","PeriodicalId":103785,"journal":{"name":"2014 1st Workshop on Pattern Recognition Techniques for Indirect Immunofluorescence Images","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 1st Workshop on Pattern Recognition Techniques for Indirect Immunofluorescence Images","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I3A.2014.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

A system for automatic classification of staining patterns in IIF imaging is presented. A full pipeline of pre-processing, feature extraction and classification stages is designed in order to overcome specific challenges posed by the nature of the data. In the preprocessing stage the images are subjected to normalization and de-noising using a sparse representation-based technique. A set morphological features, extracted using multi-level thresholding, is combined with a bundle of local gradient descriptors, selected so as to encode textural and structural information of the fluorescent patterns in multiple scales. The proposed method was evaluated using a dataset with over 10K images achieving over 90 percent of classification accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
形态学特征和局部梯度描述符的HEp-2细胞分类
提出了一种用于IIF成像染色模式自动分类的系统。为了克服数据性质带来的具体挑战,设计了一个完整的预处理、特征提取和分类阶段管道。在预处理阶段,使用基于稀疏表示的技术对图像进行归一化和去噪。采用多级阈值法提取一组形态学特征,并结合一组局部梯度描述符进行选择,在多尺度上编码荧光图案的纹理和结构信息。使用超过10K图像的数据集对所提出的方法进行了评估,获得了超过90%的分类准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HEp-2 Cell Classification Using Multi-resolution Local Patterns and Ensemble SVMs A Segmentation Method for Bone Marrow Cavity Imaging Using Graph Cuts Class-Specific Hierarchical Classification of HEp-2 Cell Images: The Case of Two Classes HEp-2 Cell Image Classification with Convolutional Neural Networks A Bag of Words Based Approach for Classification of HEp-2 Cell Images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1