An Improved Attention-based LSTM for Multi-Step Dissolved Oxygen Prediction in Water Environment

J. Bi, Yongze Lin, Quanxi Dong, Haitao Yuan, Mengchu Zhou
{"title":"An Improved Attention-based LSTM for Multi-Step Dissolved Oxygen Prediction in Water Environment","authors":"J. Bi, Yongze Lin, Quanxi Dong, Haitao Yuan, Mengchu Zhou","doi":"10.1109/ICNSC48988.2020.9238097","DOIUrl":null,"url":null,"abstract":"The prediction of accurate water quality has great significance to the sustainable management of water resources and pollution prevention. Due to the complexity of water environment, it is difficult to do so. Traditional prediction methods are mainly linear methods. Their prediction accuracy is limited since they fail to reflect nonlinear characteristics in water quality data. To achieve much higher accuracy, this work proposes to combines a Savitzky-Golay filter with Attention-based Long Short-Term Memory to perform a multi-step prediction of water quality. The proposed model uses a Savitzky-Golay filter for smoothing sequences to reduce noise interference. The adoption of an attention mechanism can extract effective information from complex, long, and temporal dependence. Experimental results demonstrate that the proposed method outperforms other state-of-the-art peers.","PeriodicalId":412290,"journal":{"name":"2020 IEEE International Conference on Networking, Sensing and Control (ICNSC)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Networking, Sensing and Control (ICNSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNSC48988.2020.9238097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

The prediction of accurate water quality has great significance to the sustainable management of water resources and pollution prevention. Due to the complexity of water environment, it is difficult to do so. Traditional prediction methods are mainly linear methods. Their prediction accuracy is limited since they fail to reflect nonlinear characteristics in water quality data. To achieve much higher accuracy, this work proposes to combines a Savitzky-Golay filter with Attention-based Long Short-Term Memory to perform a multi-step prediction of water quality. The proposed model uses a Savitzky-Golay filter for smoothing sequences to reduce noise interference. The adoption of an attention mechanism can extract effective information from complex, long, and temporal dependence. Experimental results demonstrate that the proposed method outperforms other state-of-the-art peers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于改进注意力的LSTM多步水环境溶解氧预测
准确的水质预测对水资源的可持续管理和污染防治具有重要意义。由于水环境的复杂性,很难做到这一点。传统的预测方法主要是线性方法。由于不能反映水质数据的非线性特征,其预测精度受到限制。为了获得更高的准确性,本研究提出将Savitzky-Golay过滤器与基于注意力的长短期记忆相结合,以执行多步水质预测。该模型使用Savitzky-Golay滤波器平滑序列以减少噪声干扰。注意机制的采用可以从复杂的、长时间的依赖中提取有效信息。实验结果表明,该方法优于其他先进的同类方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Improved Deep Multiple-input and Single-output PointNet for 3D Model Retrieval A Reinforcement Learning Based Medium Access Control Method for LoRa Networks A Novel Reinforcement-Learning-Based Approach to Scientific Workflow Scheduling Accelerated Latent Factor Analysis for Recommender Systems via PID Controller A Diverse Biases Non-negative Latent Factorization of Tensors Model for Dynamic Network Link Prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1