{"title":"Post-layout parasitic verification methodology for mixed-signal designs using fast-SPICE simulators","authors":"S. Sangameswaran, S. Yamauchi","doi":"10.1109/DCAS.2005.1611173","DOIUrl":null,"url":null,"abstract":"Current sub-100 nanometer processes employ complex multilayer metallization structures with advanced dielectric materials. Closely-spaced thin, tall metal interconnects with low voltage and fast-clocking edges lead to circuit performances dominated by parasitic delays. Various issues such as noise and delay associated with cross-talk due to coupling capacitances; IR drop effects in the low power supply operating regimes; high current density causing electromigration in narrow interconnect structures; and DC path leakage currents are becoming very common effects in recent mixed-signal designs. Full-chip, post-layout simulation with extracted parasitic components is required in the design flow to accurately analyze each of these effects. Due to the presence of a large amount of parasitics, it is important to extract appropriate parasitics for the relevant process corners and perform the analysis. Fast-spice simulator-based flows are becoming prevalent due to their capacity and efficiency in handling large amounts of data. In this paper, we discuss various options available for designers using fast-spice simulators (e.g. UltraSim, NanoSim, and HSIM) for post-layout simulations, and how these options affect the end results. We have simulated the design with 2.5 million RC elements in 13 hours using a fast-spice simulator. A few examples of post-layout simulations carried out on designs will be discussed.","PeriodicalId":101603,"journal":{"name":"2005 IEEE Dallas/CAS Workshop on Architecture, Circuits and Implementtation of SOCs","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE Dallas/CAS Workshop on Architecture, Circuits and Implementtation of SOCs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCAS.2005.1611173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Current sub-100 nanometer processes employ complex multilayer metallization structures with advanced dielectric materials. Closely-spaced thin, tall metal interconnects with low voltage and fast-clocking edges lead to circuit performances dominated by parasitic delays. Various issues such as noise and delay associated with cross-talk due to coupling capacitances; IR drop effects in the low power supply operating regimes; high current density causing electromigration in narrow interconnect structures; and DC path leakage currents are becoming very common effects in recent mixed-signal designs. Full-chip, post-layout simulation with extracted parasitic components is required in the design flow to accurately analyze each of these effects. Due to the presence of a large amount of parasitics, it is important to extract appropriate parasitics for the relevant process corners and perform the analysis. Fast-spice simulator-based flows are becoming prevalent due to their capacity and efficiency in handling large amounts of data. In this paper, we discuss various options available for designers using fast-spice simulators (e.g. UltraSim, NanoSim, and HSIM) for post-layout simulations, and how these options affect the end results. We have simulated the design with 2.5 million RC elements in 13 hours using a fast-spice simulator. A few examples of post-layout simulations carried out on designs will be discussed.