{"title":"Mathematical Simulation of Nonlinear Effects in Micro Ring Resonator","authors":"P. Yupapin, C. Teeka, P. Chitsakul","doi":"10.1109/NANOEL.2006.1609737","DOIUrl":null,"url":null,"abstract":"In this paper, we demonstrate the mathematical simulation data of light traveling in an optical micro ring resonator. The optical nonlinear properties such as chaos, bifurcation, bistability and instability of the optical outputs are studied. By changing the optical parameters that result the change of the optical output intensities, the nonlinear behaviors such as bifurcation, chaos and bistability effects are occurred. The relationship between the optical parameters and output intensities are derived by varying the interested parameters such as coupling coefficient (κ), nonlinear refractive index (n2), and linear phase shift (φ0). The results obtained are presented and plotted showing that the optical parameters can be changed i. e. controlled, and then the nonlinear effects characteristics can be predicted and controlled.","PeriodicalId":220722,"journal":{"name":"2006 IEEE Conference on Emerging Technologies - Nanoelectronics","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Conference on Emerging Technologies - Nanoelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANOEL.2006.1609737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
In this paper, we demonstrate the mathematical simulation data of light traveling in an optical micro ring resonator. The optical nonlinear properties such as chaos, bifurcation, bistability and instability of the optical outputs are studied. By changing the optical parameters that result the change of the optical output intensities, the nonlinear behaviors such as bifurcation, chaos and bistability effects are occurred. The relationship between the optical parameters and output intensities are derived by varying the interested parameters such as coupling coefficient (κ), nonlinear refractive index (n2), and linear phase shift (φ0). The results obtained are presented and plotted showing that the optical parameters can be changed i. e. controlled, and then the nonlinear effects characteristics can be predicted and controlled.