An IoT Edge Computing System Architecture and its Application

Shichao Chen, Qijie Li, Hua Zhang, F. Zhu, Gang Xiong, Ying Tang
{"title":"An IoT Edge Computing System Architecture and its Application","authors":"Shichao Chen, Qijie Li, Hua Zhang, F. Zhu, Gang Xiong, Ying Tang","doi":"10.1109/ICNSC48988.2020.9238096","DOIUrl":null,"url":null,"abstract":"As the number of devices connected to the Internet of things (IoT) surges, the amount of data explodes. Therefore it not only increases the bandwidth load of data transmission but also aggravates the computing and storage load of a cloud platform. At the same time, the traditional computing paradigm centered on cloud computing cannot meet the real-time requirements in many application scenarios. The emergence of edge computing can solve the problems of realtime data processing and network bandwidth occupation in the current IoT scene. In this paper, according to the characteristics of IoT, such as fragmented data, heterogeneous network, and limited energy consumption, the architecture of an IoT edge computing system is constructed to suit better an IoT scene. In addition, the application of edge computing key technologies such as virtualization, edge intelligence, computing offload, collaborative scheduling and micro-services in resource-constrained IoT scenarios is analyzed in detail. Finally, the functions and application of energy consumption monitoring and optimization to a central air-conditioning system are analyzed and summarized, which is a typical application of edge computing in the context of the IoT.","PeriodicalId":412290,"journal":{"name":"2020 IEEE International Conference on Networking, Sensing and Control (ICNSC)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Networking, Sensing and Control (ICNSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNSC48988.2020.9238096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

As the number of devices connected to the Internet of things (IoT) surges, the amount of data explodes. Therefore it not only increases the bandwidth load of data transmission but also aggravates the computing and storage load of a cloud platform. At the same time, the traditional computing paradigm centered on cloud computing cannot meet the real-time requirements in many application scenarios. The emergence of edge computing can solve the problems of realtime data processing and network bandwidth occupation in the current IoT scene. In this paper, according to the characteristics of IoT, such as fragmented data, heterogeneous network, and limited energy consumption, the architecture of an IoT edge computing system is constructed to suit better an IoT scene. In addition, the application of edge computing key technologies such as virtualization, edge intelligence, computing offload, collaborative scheduling and micro-services in resource-constrained IoT scenarios is analyzed in detail. Finally, the functions and application of energy consumption monitoring and optimization to a central air-conditioning system are analyzed and summarized, which is a typical application of edge computing in the context of the IoT.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
物联网边缘计算系统架构及其应用
随着连接到物联网(IoT)的设备数量激增,数据量爆炸式增长。这样不仅增加了数据传输的带宽负荷,也加重了云平台的计算和存储负荷。与此同时,以云计算为中心的传统计算范式已不能满足许多应用场景的实时性要求。边缘计算的出现可以解决当前物联网场景中实时数据处理和网络带宽占用的问题。本文根据物联网数据碎片化、网络异构化、能耗有限等特点,构建了更适合物联网场景的物联网边缘计算系统架构。此外,详细分析了虚拟化、边缘智能、计算卸载、协同调度、微服务等边缘计算关键技术在资源受限物联网场景下的应用。最后,对某中央空调系统能耗监测与优化的功能及应用进行了分析和总结,这是边缘计算在物联网背景下的典型应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Improved Deep Multiple-input and Single-output PointNet for 3D Model Retrieval A Reinforcement Learning Based Medium Access Control Method for LoRa Networks A Novel Reinforcement-Learning-Based Approach to Scientific Workflow Scheduling Accelerated Latent Factor Analysis for Recommender Systems via PID Controller A Diverse Biases Non-negative Latent Factorization of Tensors Model for Dynamic Network Link Prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1