Zhonglie An, M. Toda, G. Yamamoto, T. Hashida, T. Ono
{"title":"Synthesis of carbon nanotubes-Ni composite for micromechanical elements application","authors":"Zhonglie An, M. Toda, G. Yamamoto, T. Hashida, T. Ono","doi":"10.1109/MEMSYS.2015.7050974","DOIUrl":null,"url":null,"abstract":"We present the fabrication and characterization of a silicon micromirror with carbon nanotubes (CNTs)-nickel (Ni) composite beams, and evaluate the mechanical stability of the micromirror in terms of resonant frequency. A novel electroplating method is developed for the synthesis of the CNTs-Ni composite. The weight fraction of the CNTs in the electroplated composite is 2.6 wt%, and the ultramicroindentation hardness of the composite is 18.6 GPa. The maximum variation of the resonant frequency of the fabricated micromirror during a long term stability test is approximately 0.25%, and its scanning angle is approximately 20°. It shows the potential ability of the CNTs-Ni composite for micromechanical elements application.","PeriodicalId":337894,"journal":{"name":"2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2015.7050974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We present the fabrication and characterization of a silicon micromirror with carbon nanotubes (CNTs)-nickel (Ni) composite beams, and evaluate the mechanical stability of the micromirror in terms of resonant frequency. A novel electroplating method is developed for the synthesis of the CNTs-Ni composite. The weight fraction of the CNTs in the electroplated composite is 2.6 wt%, and the ultramicroindentation hardness of the composite is 18.6 GPa. The maximum variation of the resonant frequency of the fabricated micromirror during a long term stability test is approximately 0.25%, and its scanning angle is approximately 20°. It shows the potential ability of the CNTs-Ni composite for micromechanical elements application.