Electromagnetic modeling for lossy interconnect structures based on hybrid surface integral equations

W. Chen, M. Tong
{"title":"Electromagnetic modeling for lossy interconnect structures based on hybrid surface integral equations","authors":"W. Chen, M. Tong","doi":"10.1109/EDAPS.2016.7893154","DOIUrl":null,"url":null,"abstract":"Electromagnetic (EM) modeling is essential to extract equivalent circuit parameters for interconnect structures in signal integrity. The modeling can be formulated by integral equation approach and surface integral equations (SIEs) are preferred whenever available. If conducting interconnects are lossy, the loss needs to be carefully considered for accurate modeling. Traditionally, the loss is approximately accounted for by a surface impedance for simplicity, but such an approximation may not be valid when the skin depth of current is large due to the small conductivity or low operating frequency of interconnects. We propose a different scheme to model the structures by treating the lossy interconnects as penetrable media and using a hybrid surface integral equations (HSIEs) to describe them. The HSIEs are solved with the method of moments (MoM), but we employ a dual basis function (DBF) to expand the magnetic current density so that the conditioning of system matrix can be greatly improved. A numerical example is presented to demonstrate the scheme and good results have been obtained.","PeriodicalId":191549,"journal":{"name":"2016 IEEE Electrical Design of Advanced Packaging and Systems (EDAPS)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Electrical Design of Advanced Packaging and Systems (EDAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDAPS.2016.7893154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Electromagnetic (EM) modeling is essential to extract equivalent circuit parameters for interconnect structures in signal integrity. The modeling can be formulated by integral equation approach and surface integral equations (SIEs) are preferred whenever available. If conducting interconnects are lossy, the loss needs to be carefully considered for accurate modeling. Traditionally, the loss is approximately accounted for by a surface impedance for simplicity, but such an approximation may not be valid when the skin depth of current is large due to the small conductivity or low operating frequency of interconnects. We propose a different scheme to model the structures by treating the lossy interconnects as penetrable media and using a hybrid surface integral equations (HSIEs) to describe them. The HSIEs are solved with the method of moments (MoM), but we employ a dual basis function (DBF) to expand the magnetic current density so that the conditioning of system matrix can be greatly improved. A numerical example is presented to demonstrate the scheme and good results have been obtained.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于混合曲面积分方程的有耗互连结构电磁建模
在信号完整性方面,电磁建模是提取互连结构等效电路参数的关键。建模可以采用积分方程方法,只要条件允许,最好采用曲面积分方程。如果导电互连是有损耗的,则需要仔细考虑损耗以进行准确的建模。传统上,为了简单起见,损耗近似地由表面阻抗来解释,但是当由于互连的小导电性或低工作频率而导致电流的集肤深度很大时,这种近似可能不有效。我们提出了一种不同的方案来模拟结构,将有耗互连视为可穿透介质,并使用混合表面积分方程(hsi)来描述它们。采用矩量法(MoM)求解hsi,采用对偶基函数(DBF)扩展磁流密度,从而大大改善了系统矩阵的调理。最后通过一个算例对该方案进行了验证,取得了良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhanced macromodels of high-speed low-power differential drivers Broadband material model identification with GMS-parameters Modeling of power distribution networks for path finding 36-GHz-bandwidth quad-channel driver module using compact QFN package for optical coherent systems Evaluation of near-singular integrals for quadrilateral basis in integral equation solver
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1