In-depth soft error vulnerability analysis using synthetic benchmarks

S. Mirkhani, Balavinayagam Samynathan, J. Abraham
{"title":"In-depth soft error vulnerability analysis using synthetic benchmarks","authors":"S. Mirkhani, Balavinayagam Samynathan, J. Abraham","doi":"10.1109/VTS.2015.7116254","DOIUrl":null,"url":null,"abstract":"Statistical fault injection is widely used for analyzing hardware in the presence of soft errors. Although this method can give accurate results for averaged erroneous outcomes with a fairly small sample size, it will not be accurate for vulnerability analysis of each sequential element in the design with small sample sizes. This paper describes a novel and highly efficient technique which is suitable for detailed vulnerability analysis of a processor. The technique involves specific sets of assembly language routines, and is shown to be much more efficient and comprehensive compared with traditional statistical error injection on a predetermined set of benchmarks. We have shown the effectiveness of the method using error injection in an ARM Amber25 processor model. Our analysis is based on more than 330,000 simulation runs with single bit-flips on the sequential elements of this processor running our synthetic benchmarks and 40,000 FPGA-based error injections for 4 conventional benchmarks.","PeriodicalId":187545,"journal":{"name":"2015 IEEE 33rd VLSI Test Symposium (VTS)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 33rd VLSI Test Symposium (VTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTS.2015.7116254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Statistical fault injection is widely used for analyzing hardware in the presence of soft errors. Although this method can give accurate results for averaged erroneous outcomes with a fairly small sample size, it will not be accurate for vulnerability analysis of each sequential element in the design with small sample sizes. This paper describes a novel and highly efficient technique which is suitable for detailed vulnerability analysis of a processor. The technique involves specific sets of assembly language routines, and is shown to be much more efficient and comprehensive compared with traditional statistical error injection on a predetermined set of benchmarks. We have shown the effectiveness of the method using error injection in an ARM Amber25 processor model. Our analysis is based on more than 330,000 simulation runs with single bit-flips on the sequential elements of this processor running our synthetic benchmarks and 40,000 FPGA-based error injections for 4 conventional benchmarks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用合成基准进行深入的软错误漏洞分析
统计故障注入被广泛用于分析存在软错误的硬件。虽然该方法对于样本量较小的平均错误结果可以给出准确的结果,但对于样本量较小的设计中每个序列元素的脆弱性分析,该方法并不准确。本文提出了一种新颖、高效的方法,适用于处理器的详细漏洞分析。该技术涉及特定的汇编语言例程集,与传统的基于预定基准集的统计错误注入相比,该技术更加有效和全面。我们已经在ARM Amber25处理器模型中证明了错误注入方法的有效性。我们的分析是基于超过33万次模拟运行,在该处理器的顺序元件上进行单比特翻转,运行我们的合成基准测试,并在4个常规基准测试中进行4万次基于fpga的错误注入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enabling unauthorized RF transmission below noise floor with no detectable impact on primary communication performance Innovative practices session 7C: Mixed signal test and debug Impact of parameter variations on FinFET faults A call to action: Securing IEEE 1687 and the need for an IEEE test Security Standard An early prediction methodology for aging sensor insertion to assure safe circuit operation due to NBTI aging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1