{"title":"Análise comparativa da influência de otimizadores no desempenho de uma CNN para detecção do câncer de mama","authors":"S. A. Santos, A. G. Moreira, Ialis C. P. Junior","doi":"10.5753/ercemapi.2021.17901","DOIUrl":null,"url":null,"abstract":"O campo da inteligência artificial (IA) apresenta notáveis avanços na medicina. Estudos analisam a aplicação de Redes Neurais Convolucionais para a detecção de câncer de mama. Neste artigo, é realizada uma análise comparativa entre os métodos de otimização (Adam, Adadelta, Adagrad, Adamax, Nadam, RMSprop) aplicados a uma arquitetura VggNet16 para a classificação de neoplasias em imagens histopatológicas. Os experimentos foram realizados com a criação de modelos para os fatores de ampliação (40x, 100x, 200x, 400x) das imagens extraídas do dataset BreakHis. O otimizador Adam obteve o melhor resultado para o conjunto de imagens, especificamente na base 400x.","PeriodicalId":422707,"journal":{"name":"Anais da IX Escola Regional de Computação Ceará, Maranhão, Piauí (ERCEMAPI 2021)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais da IX Escola Regional de Computação Ceará, Maranhão, Piauí (ERCEMAPI 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/ercemapi.2021.17901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
O campo da inteligência artificial (IA) apresenta notáveis avanços na medicina. Estudos analisam a aplicação de Redes Neurais Convolucionais para a detecção de câncer de mama. Neste artigo, é realizada uma análise comparativa entre os métodos de otimização (Adam, Adadelta, Adagrad, Adamax, Nadam, RMSprop) aplicados a uma arquitetura VggNet16 para a classificação de neoplasias em imagens histopatológicas. Os experimentos foram realizados com a criação de modelos para os fatores de ampliação (40x, 100x, 200x, 400x) das imagens extraídas do dataset BreakHis. O otimizador Adam obteve o melhor resultado para o conjunto de imagens, especificamente na base 400x.