Combined DES/SD simulaton model of breast cancer screening for older women: An overview

J. Tejada, K. Diehl, J. Ivy, James R. Wilson, R. King, Matthew J. Ballan, M. Kay, B. Yankaskas
{"title":"Combined DES/SD simulaton model of breast cancer screening for older women: An overview","authors":"J. Tejada, K. Diehl, J. Ivy, James R. Wilson, R. King, Matthew J. Ballan, M. Kay, B. Yankaskas","doi":"10.1109/WSC.2013.6721406","DOIUrl":null,"url":null,"abstract":"We develop a simulation modeling framework for evaluating the effectiveness of breast cancer screening policies for US women of age 65+. We introduce a two-phase simulation approach to modeling the main components in the breast cancer screening process. The first phase is a natural-history model of the incidence and progression of untreated breast cancer in randomly sampled individuals from the designated population. Combining discrete event simulation (DES) and system dynamics (SD) submodels, the second phase is a screening-and-treatment model that uses information about the genesis of breast cancer in the sampled individuals as generated by the natural-history model to estimate the benefits of different policies for screening the designated population and treating the affected women. Based on extensive simulation-based comparisons of alternative screening policies, we concluded that annual screening from age 65 to age 80 is the best policy for minimizing breast cancer deaths or for maximizing quality-adjusted life-years saved.","PeriodicalId":223717,"journal":{"name":"2013 Winter Simulations Conference (WSC)","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Winter Simulations Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC.2013.6721406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We develop a simulation modeling framework for evaluating the effectiveness of breast cancer screening policies for US women of age 65+. We introduce a two-phase simulation approach to modeling the main components in the breast cancer screening process. The first phase is a natural-history model of the incidence and progression of untreated breast cancer in randomly sampled individuals from the designated population. Combining discrete event simulation (DES) and system dynamics (SD) submodels, the second phase is a screening-and-treatment model that uses information about the genesis of breast cancer in the sampled individuals as generated by the natural-history model to estimate the benefits of different policies for screening the designated population and treating the affected women. Based on extensive simulation-based comparisons of alternative screening policies, we concluded that annual screening from age 65 to age 80 is the best policy for minimizing breast cancer deaths or for maximizing quality-adjusted life-years saved.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
老年妇女乳腺癌筛查的DES/SD联合模拟模型综述
我们开发了一个模拟建模框架来评估美国65岁以上女性乳腺癌筛查政策的有效性。我们介绍了一种两阶段的模拟方法来模拟乳腺癌筛查过程中的主要组成部分。第一阶段是从指定人群中随机抽取个体,建立未经治疗的乳腺癌发病率和进展的自然历史模型。结合离散事件模拟(DES)和系统动力学(SD)子模型,第二阶段是一个筛查和治疗模型,该模型使用自然历史模型生成的样本个体中乳腺癌发生的信息来估计筛查指定人群和治疗受影响妇女的不同政策的好处。基于广泛的基于模拟的替代筛查政策的比较,我们得出结论,从65岁到80岁的年度筛查是最大限度地减少乳腺癌死亡率或最大限度地提高质量调整生命年的最佳政策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stochastic root finding for optimized certainty equivalents Uncertainty modeling and simulation of tool wear in mechanized tunneling The knowledge gradient algorithm using locally parametric approximations Emergence by strategy: Flocking boids and their fitness in relation to model complexity Time management in hierarchical federation using RTI-RTI interoperation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1