Frequency-scalable nonlinear behavioral transistor model from single frequency X-parameters based on time-reversal transformation properties (INVITED)

D. Root, R. M. Biernacki, M. Marcu, M. Koh, P. Tasker
{"title":"Frequency-scalable nonlinear behavioral transistor model from single frequency X-parameters based on time-reversal transformation properties (INVITED)","authors":"D. Root, R. M. Biernacki, M. Marcu, M. Koh, P. Tasker","doi":"10.1109/ARFTG.2015.7381463","DOIUrl":null,"url":null,"abstract":"This paper presents a powerful new method that generates a frequency-scalable nonlinear simulation model from single-frequency large-signal transistor X-parameter data. The method is based on a novel orthogonal identification (direct extraction) of current source and charge source contributions to the spectrally rich port currents under large-signal conditions. Explicit decomposition formulae, applied entirely in the frequency domain, are derived in terms of sensitivity functions at pairs of large-signal operating points related to one-another by time-reversal transformation. The method is applied and validated with respect to data from a measurement-based model of a pHEMT transistor. It is demonstrated that the scalable model can predict the nonlinear performance of the transistor over several orders of magnitude in frequency, all from X-parameters at a single fundamental frequency.","PeriodicalId":170825,"journal":{"name":"2015 86th ARFTG Microwave Measurement Conference","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 86th ARFTG Microwave Measurement Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARFTG.2015.7381463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper presents a powerful new method that generates a frequency-scalable nonlinear simulation model from single-frequency large-signal transistor X-parameter data. The method is based on a novel orthogonal identification (direct extraction) of current source and charge source contributions to the spectrally rich port currents under large-signal conditions. Explicit decomposition formulae, applied entirely in the frequency domain, are derived in terms of sensitivity functions at pairs of large-signal operating points related to one-another by time-reversal transformation. The method is applied and validated with respect to data from a measurement-based model of a pHEMT transistor. It is demonstrated that the scalable model can predict the nonlinear performance of the transistor over several orders of magnitude in frequency, all from X-parameters at a single fundamental frequency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于时间反转变换特性的单频x参数的频率可扩展非线性行为晶体管模型
本文提出了一种利用单频大信号晶体管x参数数据生成频率可扩展非线性仿真模型的新方法。该方法基于一种新颖的正交识别方法(直接提取),在大信号条件下,电流源和电荷源对频谱丰富的端口电流的贡献。显式分解公式完全应用于频域,通过时间反转变换推导出大信号工作点对上的灵敏度函数。通过pHEMT晶体管基于测量模型的数据,对该方法进行了应用和验证。结果表明,可扩展模型可以预测晶体管在几个数量级频率上的非线性性能,所有这些都来自单一基频下的x参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Broadband single-cell detection with a coplanar series gap Uncertainty analysis in coplanar waveguide with unscented transformation Measurement methods for the permittivity of thin sheet dielectric materials Continuing challenge of improving measurement accuracy in terahertz vector network analyzers (INVITED) — The Taming of "Terahertz vector network analyzers" Calibration/verification standards for measurement of extremely high impedances
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1