Biologically-Inspired Dense Local Descriptor for Indirect Immunofluorescence Image Classification

Diego Gragnaniello, Carlo Sansone, L. Verdoliva
{"title":"Biologically-Inspired Dense Local Descriptor for Indirect Immunofluorescence Image Classification","authors":"Diego Gragnaniello, Carlo Sansone, L. Verdoliva","doi":"10.1109/I3A.WORKSHOP.2014.18","DOIUrl":null,"url":null,"abstract":"This work deals with the design of a classification method for cells extracted from Indirect Immunofluorescence images. In particular, we propose to use a dense local descriptor invariant both to scale changes and to rotations in order to classify the six categories of staining patterns of the cells. The descriptor is able to give a compact and discriminative representation and combines a log-polar sampling with spatially-varying gaussian smoothing applied on the gradients images in specific directions. Bag of Words is finally used to perform classification and experimental results show very good performance.","PeriodicalId":103785,"journal":{"name":"2014 1st Workshop on Pattern Recognition Techniques for Indirect Immunofluorescence Images","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 1st Workshop on Pattern Recognition Techniques for Indirect Immunofluorescence Images","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I3A.WORKSHOP.2014.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

This work deals with the design of a classification method for cells extracted from Indirect Immunofluorescence images. In particular, we propose to use a dense local descriptor invariant both to scale changes and to rotations in order to classify the six categories of staining patterns of the cells. The descriptor is able to give a compact and discriminative representation and combines a log-polar sampling with spatially-varying gaussian smoothing applied on the gradients images in specific directions. Bag of Words is finally used to perform classification and experimental results show very good performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于间接免疫荧光图像分类的生物启发密集局部描述子
本工作涉及设计一种从间接免疫荧光图像中提取细胞的分类方法。特别是,我们建议使用密集的局部描述符不变量来缩放变化和旋转,以便对细胞的六种染色模式进行分类。该描述符能够给出紧凑的判别表示,并将对数极坐标采样与空间变化的高斯平滑相结合,应用于特定方向的梯度图像。最后使用Bag of Words进行分类,实验结果显示了很好的分类效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HEp-2 Cell Classification Using Multi-resolution Local Patterns and Ensemble SVMs A Segmentation Method for Bone Marrow Cavity Imaging Using Graph Cuts Class-Specific Hierarchical Classification of HEp-2 Cell Images: The Case of Two Classes HEp-2 Cell Image Classification with Convolutional Neural Networks A Bag of Words Based Approach for Classification of HEp-2 Cell Images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1